Boosting Oxygen Electrocatalysis in CoN-CoSe2 Heterogeneous Hollow Nanocages with Engineered Build-In Electric Field for Zn–Air Batteries
Tiantian Tang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorHanwen He
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorYukun Liu
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorHongrui Yang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorJiabei Yu
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorXinshuang Lin
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorYang Song
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorCorresponding Author
Sen Zhang
College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chao Deng
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorTiantian Tang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorHanwen He
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorYukun Liu
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorHongrui Yang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorJiabei Yu
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorXinshuang Lin
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorYang Song
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
Search for more papers by this authorCorresponding Author
Sen Zhang
College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chao Deng
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, College of Physics and Electric Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The exploration of oxygen catalyst with superior behaviors in a wide temperature range is a key issue for Zn–air battery. Herein, the CoN-CoSe2@C hollow cages with a built-in electric field (BIEF) on heterointerface are explored as the oxygen electrocatalyst for Zn–air battery (ZAB). Based on the theoretical analysis, the large work function difference (∆WF) of CoN-CoSe2 heterostructure propels the interfacial electron redistribution, which results in the strong BIEF and facilitates high catalytic activities. In addition, the CoN-CoSe2 nanocrystals are embedded in the hollow carbon nanocage to fully realize its performance. The central hollow structure of the carbon based nanocages provides the facile electron/ion/mass pathways and endows fast kinetics. Taking the advantages of both the strong BIEF and the well-designed substrate, the CoN-CoSe2@C hollow cages achieve the superior bifunctional electrocatalytic behaviors and good cycling performance even down to low-temperature such as −30 °C. Moreover, the full ZAB with CoN-CoSe2@C hollow cage cathode shows the superior performance and high reliability in diverse working conditions. Therefore, it is a promising power source candidate for the electronics in practical applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202412068-sup-0001-SuppMat.pdf723.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. X. Ding, J. G. Hu, L. M. Zhao, W. Jin, H. N. Yu, Y. P. Liu, Z. H. Wu, S. Cai, Y. Yang, G. Q. Zou, H. S. Hou, X. B. Ji, Nano Energy 2024, 121, 109270.
- 2K. X. Ding, Y. Ye, J. G. Hu, L. M. Zhao, W. Jin, J. Luo, S. Cai, B. C. Weng, G. Q. Zou, H. S. Hou, X. B. Ji, Nano-Micro Lett. 2023, 15, 28.
- 3K. X. Ding, J. G. Hu, W. Jin, L. M. Zhao, Y. P. Liu, Z. H. Wu, B. C. Weng, H. S. Hou, X. B. Ji, Adv. Funct. Mater. 2022, 32, 2201944.
- 4K. X. Ding, J. G. Hu, J. Luo, L. M. Zhao, W. Jin, Y. P. Liu, Z. H. Wu, G. Q. Zou, H. S. Hou, X. B. Ji, Adv. Funct. Mater. 2022, 32, 2207331.
- 5P. Yu, L. Wang, F. F. Sun, Y. Xie, X. Liu, J. Y. Ma, X. W. Wang, C. G. Tian, J. H. Li, H. G. Fu, Adv. Mater. 2019, 31, 1901666.
- 6L. N. Liu, Y. Wang, F. Yan, C. L. Zhu, B. Geng, Y. J. Chen, S. L. Chou, Small 2020, 4, 1900571.
- 7Q. Liu, L. Wang, H. G. Fu, J. Mater. Chem. A. 2023, 11, 4400.
- 8X. Liu, W. Yan, J. Song, H. Song, W. M. Chen, Y. X. Zhang, Y. L. Chen, Chem. Eng. J. 2024, 492, 152301.
- 9L. F. Lu, H. Zheng, Y. X. Li, Y. H. Zhou, B. Z. Fang, Chem. Eng. J. 2023, 451, 138668.
- 10J. Y. Zhang, J. S. Lian, Q. Jiang, G. Y. Wang, Chem. Eng. J. 2022, 439, 135634.
- 11X. H. Yang, Z. N. Zhou, Y. Y. Zou, J. Q. Kuang, D. W. Ye, S. S. Zhang, Q. Z. Gao, S. Y. Yang, X. Cai, Y. P. Fang, Appl. Catal. B Environ. 2023, 325, 122332.
- 12F. Dong, M. J. Wu, Z. S. Chen, N. Chen, M. Bakhtbidar, A. Ruediger, G. X. Zhang, S. H. Sun, Nano Energy 2025, 133, 110497.
- 13L. X. Luo, Y. R. Liu, S. Y. Chen, Q. W. Zhu, D. Zhang, Y. Fu, J. Q. Li, J. L. Han, S. Gong, Small. 2024, 29, 2308756.
- 14J. M. Li, Y. M. Kang, Z. Q. Lei, P. Liu, Appl. Catal. B Environ. 2023 , 321, 122029.
- 15Y. K. Liu, X. S. Lin, B. Li, H. W. He, H. Y. Xing, Y. Q. Zhang, Y. Song, S. Zhang, C. Deng, J. Colloid Interface Sci. 2025, 687, 303.
- 16Y. Song, C. Y. Li, Y. Zhou, T. T. Tang, J. Wang, Y. C. Shang, C. Deng, ACS Appl. Nano Mater. 2024, 7, 25152.
- 17X. Y. Wang, L. Chen, Y. J. Yu, W. Wang, L. G. Yue, Z. H. Shao, H. Wu, Y. Y. Li, Adv. Funct. Mater. 2024, 34, 2406290.
- 18J. H. Li, Z. Y. Wang, K. X. Shi, Y. J. Wu, W. Z. Huang, Y. G. Min, Q. B. Liu, Z. X. Liang, Adv. Energy Mater. 2024, 14, 2303546.
- 19P. F. Zhu, J. G. Hu, J. Hu, Y. Yang, W. Sun, Y. Yang, G. Q. Zou, H. S. Hou, X. B. Ji, ACS Energy Lett. 2024, 9, 569.
- 20P. F. Zhu, Z. P. Jiang, W. Sun, Y. Yang, D. S. Silvester, H. S. Hou, C. E. Banks, J. G. Hu, X. B. Ji, Energy Environ. Sci. 2023, 16, 3564.
- 21M. J. Hou, S. Q. Gong, L. L. Ji, J. H. Huang, M. Z. Xu, Z. F. Chen, Chem. Eng. J. 2021, 419, 129575.
- 22Z. Y. Chen, J. G. Hu, S. J. Liu, H. S. Hou, G. Q. Zou, W. T. Deng, X. B. Ji, Chem. Eng. J. 2021, 404, 126536.
- 23L. X. Sun, H. S. Xu, Y. Yang, L. Li, X. H. Zhao, W. M. Zhang, Int. J. of Hydrogen Energy 2023, 48, 5095.
- 24H. M. Wang, C. Deng, X. L. Li, D. K. Yan, M. X. Xie, S. Zhang, B. Huang, Chem. Eng. J. 2021, 420, 129681.
- 25Y. Zhou, M. X. Xie, Y. Song, D. K. Yan, Z. L. Wang, S. Zhang, C. Deng, Energy Storage. Mater. 2022, 47, 235.
- 26J. Q. Si, X. Y. Liu, Z. L. Wang, S. Zhang, C. Deng, J. Energy Chem. 2023, 76, 349.
- 27E. Ploetz, H. Engelke, U. Lächelt, S. Wuttke, Adv. Funct. Mater. 2020, 30, 1909062.
- 28A. A. Gabrienko, S. Chaemchuen, Z. K. Kou, N. Ogiwara, H. Kitagawa, A. E. Khudozhitkov, A. G. Stepanov, D. I. Kolokolov, F. Verpoort, Angew. Chem., Int. Ed. 2025, 64, 202414823.
- 29J. F. Ma, Y. N. Hou, J. B. Guo, H. M. A. Sharif, C. Huang, J. H. Zhao, H. B. Li, Y. Y. Song, C. C. Lu, Y. Han, Y. S. Zhang, A. J. Wang, Environ. Res. 2022, 204, 112086.
- 30M. Borghei, J. Lehtonen, L. Liu, O. J. Rojas, Adv. Mater. 2018, 30, 1703691.
- 31Y. Zhou, Y. K. Liu, Z. L. Wang, C. Y. Li, Z. Y. Wang, S. Zhang, C. Deng, Energy Storage Mater. 2023, 59, 102772.
- 32M. G. Zhang, T. T. Hu, X. Wang, P. Chang, Z. P. Jin, L. K. Pan, H. Mei, L. F. Cheng, L. T. Zhang, J. Mater. Chem. A. 2022, 10, 7195.
- 33N. Z. Wang, M. X. Sun, X. H. Ren, L. Hu, Z. J. Li, X. J. Yao, C. Y. Jia, Energy Storage Mater. 2024, 68, 103333.
- 34X. Y. Liu, Z. L. Wang, J. Wang, T. T. Tang, C. Y. Li, J. B. Yu, S. Zhang, C. Deng, Energy Storage Mater. 2024, 65, 103184.
- 35F. Liu, S. H. Xu, W. B. Gong, K. T. Zhao, Z. M. Wang, J. Luo, C. S. Li, Y. Sun, P. Xue, C. L. Wang, L. Wei, Q. W. Li, Q. C. Zhang, ACS Nano 2023, 17, 18494.
- 36Y. Sang, C. Y. Li, J. Wang, H. R. Yang, H. W. He, Y. K. Liu, S. Zhang, C. Deng, J. Colloid Interface Sci. 2025, 677, 140.
10.1016/j.jcis.2024.08.065 Google Scholar
- 37C. Feng, W. L. Zhou, H. Y. Wu, Q. H. Huo, J. X. Shao, X. Li, H. P. Yang, Q. Hu, C. X. He, Appl. Catal. B Environ. 2024, 341, 123280.
- 38L. Xu, C. Huang, Z. L. Hua, L. Y. Chen, Energy Storage Mater. 2023, 61, 102888.
- 39C. J. Xuan, T. Shen, B. S. Hou, Chem. Eng. J. 2024, 479, 147723.
- 40S. J. Shen, Z. P. Wang, Z. P. Lin, K. Song, Q. H. Zhang, F. Q. Meng, L. Gu, W. W. Zhong, Adv. Mater. 2022, 34, 2110631.
- 41J. Wang, B. Li, T. T. Tang, C. Y. Li, H. R. Yang, H. W. He, X. S. Lin, Y. Song, S. Zhang, C. Deng, J. Colloid Interface Sci. 2025, 679, 947.
- 42P. Bai, P. Wang, J. R. Mu, Y. H. Zhao, C. F. Du, Y. G. Su, Appl. Catal. B Environ. 2024, 349, 123882.
- 43X. Li, Y. Wu, D. K. Yan, M. X. Xie, S. Zhang, C. Deng, J. Mater. Chem. A. 2021, 9, 16028.
- 44G. M. Zhang, H. F. Wang, S. Zhang, C. Deng, J. Mater. Chem. A 2018, 6, 9019.
- 45H. Seong, K. Min, G. Lee, K. Kwon, S. H. Baeck, Appl. Catal. B Environ. 2025, 362, 124725.
- 46X. Q. Xu, T. M. Tang, G. R. Zhang, J. Q. Guan, Nano Energy 2024, 131, 110294.
- 47Z. Zhang, M. J. Yan, Z. L. Xiong, S. J. Wang, C. Q. Li, J. Energy Storage 2024, 101, 113668.
- 48Y. Liu, Q. L. Zhu, L. Zhang, Q. L. Xu, X. W. Li, G. Z. Hu, J. Colloid Interface Sci. 2024, 674, 361.
- 49S. Min, K. Min, G. Lee, J. Kim, S. E. Shim, S. H. Baeck, J. Energy Storage. 2024, 86, 111298.