Enhancement Mechanism of Photo-Induced Artificial Boundary on Ultrastable Hybrid Solid-electrolyte Interphase of Si Anodes
Zeyu Xu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
Search for more papers by this authorZhenzhuo Liu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
Search for more papers by this authorHaibo Shao
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
Search for more papers by this authorCorresponding Author
Yingchun Liu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianming Wang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZeyu Xu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
Search for more papers by this authorZhenzhuo Liu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
Search for more papers by this authorHaibo Shao
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
Search for more papers by this authorCorresponding Author
Yingchun Liu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianming Wang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 PR China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Unstable solid-electrolyte interphase (SEI) film resulting from chemically active surface state and huge volume fluctuation limits the development of Si-based anode materials in lithium-ion batteries. Herein, a photo-initiated polypyrrole (PPy) coating is manufactured on Si nanoparticles to guide the in situ generation of PPy-integrated hybrid SEI film (hSEI). The hSEI film shows excellent structure stability and optimized component composition for lithium storage. More promisingly, the photo-initiated hSEI precursor with more uniform thickness, stronger interaction with inner particles, and higher mechanical strength further enables the structural integrity of the hSEI film. The highly ordered interchain structure of photo-initiated hSEI precursor can maintain effective Li+ transport during the electrochemical cycling. Consequently, SiNPs@hSEI-L anode maintains a reversible capacity of 1044.7 mAh g−1 after 500 cycles at 2 A g−1, manifesting superior electrochemical lithium storage. This work proposes a novel polymer-integrated hSEI formation and provides an effective reference for the optimization of semiconductor materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410930-sup-0001-SuppMat.docx5.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. G. Wang, T. C. Liu, T. P. Wu, J. Lu, Nature 2022, 611, 61; b) M. Z. Ge, C. Y. Cao, G. M. Biesold, C. D. Sewell, S. M. Hao, J. Y. Huang, W. Zhang, Y. K. Lai, Z. Q. Lin, Adv. Mater. 2021, 33, 2004577; c) Y. F. Tian, G. Li, D. X. Xu, Z. Y. Lu, M. Y. Yan, J. Wan, J. Y. Li, Q. Xu, S. Xin, R. Wen, Y. G. Guo, Adv. Mater. 2022, 34, 2200672.
- 2a) K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Nature 2018, 559, 467; b) F. X. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 2020, 49, 1569; c) K. Zhao, W. L. Wang, J. Gregoire, M. Pharr, Z. Suo, J. J. Vlassak, E. Kaxiras, Nano Lett. 2011, 11, 2962; d) Y. Cui, Nat. Energy 2021, 6, 995.
- 3a) Y. M. Sun, N. A. Liu, Y. Cui, Nat. Energy 2016, 1, 16071; b) W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, M. Yang, X. Zhu, Y. Xia, S. Shi, L. Chen, H. Li, F. Wu, Nat. Energy 2023, 8, 800; c) A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 2010, 9, 353; d) W. L. An, B. A. Gao, S. X. Mei, B. Xiang, J. J. Fu, L. Wang, Q. B. Zhang, P. K. Chu, K. F. Huo, Nat. Commun. 2019, 10, 1447.
- 4a) Y. Z. Li, K. Yan, H. W. Lee, Z. D. Lu, N. Liu, Y. Cui, Nat. Energy 2016, 1, 15029; b) D. H. S. Tan, Y. T. Chen, H. D. Yang, W. Bao, B. Sreenarayanan, J. M. Doux, W. K. Li, B. Y. Lu, S. Y. Ham, B. Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han, H. J. Hah, H. Jeong, J. B. Lee, Z. Chen, Y. S. Meng, Science 2021, 373, 1494; c) F. Wang, J. Mao, Y. Zhao, Adv. Mater. 2023, 35, 2307908; d) C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31; e) Z. Y. Xu, Y. P. Hou, J. F. Guo, J. M. Wang, S. D. Zhou, ACS Appl. Energ. Mater. 2021, 4, 14141.
- 5a) C. T. Cao, I. I. Abate, E. Sivonxay, B. Shyam, C. J. Jia, B. Moritz, T. P. Devereaux, K. A. Persson, H. G. Steinrück, M. F. Toney, Joule 2019, 3, 762; b) C. H. Yu, X. Q. Lin, X. Chen, L. X. Qin, Z. X. Xiao, C. X. Zhang, R. F. Zhang, F. Wei, Nano Lett. 2020, 20, 5176; c) S. Ko, X. Han, T. Shimada, N. Takenaka, Y. Yamada, A. Yamada, Nat. Sustain. 2023, 6, 1705.
- 6a) C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mat. 2015, 27, 2591; b) J. Chen, X. Fan, Q. Li, H. Yang, M. R. Khoshi, Y. Xu, S. Hwang, L. Chen, X. Ji, C. Yang, H. He, C. Wang, E. Garfunkel, D. Su, O. Borodin, C. Wang, Nat. Energy 2020, 5, 386.
- 7a) H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat. Nanotechnol. 2012, 7, 310; b) L. Sun, Y. Liu, L. J. Wang, Z. Jin, Adv. Funct. Mater. 2024, 34, 2403032; c) J. Y. Sun, Y. C. Li, L. Z. Lv, L. F. Wang, W. X. Xiong, L. Huang, Q. T. Qu, Y. Wang, M. Shen, H. H. Zheng, Adv. Funct. Mater. 2024, 34, 2410693.
- 8a) N. Liu, Z. D. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. T. Zhao, Y. Cui, Nat. Nanotechnol. 2014, 9, 187; b) S. Choi, T. W. Kwon, A. Coskun, J. W. Choi, Science 2017, 357, 279; c) S. Bai, W. Bao, K. Qian, B. Han, W. Li, B. Sayahpour, B. Sreenarayanan, D. H. S. Tan, S.-y. Ham, Y. S. Meng, Adv. Energy Mater. 2023, 13, 2301041.
- 9a) Y. S. Hu, Y. G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, Nat. Mater. 2006, 5, 713; b) Q. Chen, K. Sieradzki, Nat. Mater. 2013, 12, 1102.
- 10a) Q. F. Xiao, M. Gu, H. Yang, B. Li, C. M. Zhang, Y. Liu, F. Liu, F. Dai, L. Yang, Z. Y. Liu, X. C. Xiao, G. Liu, P. Zhao, S. L. Zhang, C. M. Wang, Y. F. Lu, M. Cai, Nat. Commun. 2015, 6, 8844; b) Y. He, L. Jiang, T. Chen, Y. Xu, H. Jia, R. Yi, D. Xue, M. Song, A. Genc, C. Bouchet-Marquis, L. Pullan, T. Tessner, J. Yoo, X. Li, J.-G. Zhang, S. Zhang, C. Wang, Nat. Nanotechnol. 2021, 16, 1113.
- 11a) H. Wu, G. H. Yu, L. J. Pan, N. A. Liu, M. T. McDowell, Z. A. Bao, Y. Cui, Nat. Commun. 2013, 4, 1943; b) S.-M. Kim, M. H. Kim, S. Y. Choi, J. G. Lee, J. Jang, J. B. Lee, J. H. Ryu, S. S. Hwang, J.-H. Park, K. Shin, Y. G. Kim, S. M. Oh, Energy Environ. Sci. 2015, 8, 1538; c) Y. Y. Lv, M. W. Shang, X. Chen, P. S. Nezhad, J. J. Niu, ACS Nano 2019, 13, 12032.
- 12a) Y. Yao, N. Liu, M. T. McDowell, M. Pasta, Y. Cui, Energy Environ. Sci. 2012, 5, 7927; b) S. J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V. S. Battaglia, W. Yang, G. Liu, J. Am. Chem. Soc. 2015, 137, 2565.
- 13a) B. H. Shen, S. Wang, W. E. Tenhaeff, Sci. Adv. 2019, 5, eaaw4856; b) S. Y. Pan, J. W. Han, Y. Q. Wang, Z. S. Li, F. Q. Chen, Y. Guo, Z. S. Han, K. F. Xiao, Z. C. Yu, M. Y. Yu, S. C. Wu, D. W. Wang, Q. H. Yang, Adv. Mater. 2022, 34, 2203617.
- 14Z. D. Chen, A. Soltani, Y. G. Chen, Q. B. Zhang, A. Davoodi, S. Hosseinpour, W. Peukert, W. Liu, Adv. Energy Mater. 2022, 12, 2200924.
- 15a) C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. Bao, Nat. Chem. 2013, 5, 1042; b) B. Zhang, Y. Dong, J. Han, Y. Zhen, C. Hu, D. Liu, Adv. Mater. 2023, 35, 2301320.
- 16a) C. Chen, T. Zhou, D. L. Danilov, L. Gao, S. Benning, N. Schön, S. Tardif, H. Simons, F. Hausen, T. U. Schülli, R. A. Eichel, P. H. L. Notten, Nat. Commun. 2020, 11, 3283; b) W. Huang, Y. Wang, L. Lv, G. Zhu, Q. Qu, H. Zheng, Energy Storage Mater. 2022, 52, 646; c) D.-Y. Han, I. K. Han, H. Y. Jang, S. Kim, J. Y. Kwon, J. Park, S. Back, S. Park, J. Ryu, Energy Storage Mater. 2024, 65, 103176; d) C. C. Sun, R. H. Li, S. T. Weng, C. N. Zhu, L. Chen, S. Jiang, L. Li, X. Z. Xiao, C. W. Liu, L. X. Chen, T. Deng, X. F. Wang, X. L. Fan, Angew. Chem., Int. Ed. 2024, 63, 202400761; e) K. Cheng, S. B. Tu, B. Zhang, W. Y. Wang, X. H. Wang, Y. C. Tan, X. X. Chen, C. H. Li, C. H. Li, L. Wang, Y. M. Sun, Energy Environ. Sci. 2024, 17, 2631; f) L. Wang, J. Yu, S. Li, F. Xi, W. Ma, K. Wei, J. Lu, Z. Tong, B. Liu, B. Luo, Energy Storage Mater. 2024, 66, 103243.
- 17Q. Y. Wang, M. Zhu, G. R. Chen, N. Dudko, Y. Li, H. J. Liu, L. Y. Shi, G. Wu, D. S. Zhang, Adv. Mater. 2022, 34, 2109658.
- 18a) F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, J. S. Chen, Adv. Mater. 2014, 26, 6145; b) W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li, J. Yang, Adv. Energy Mater. 2017, 7, 1701083.
- 19Z. Y. Xu, E. Zheng, Z. W. Xiao, H. B. Shao, Y. C. Liu, J. M. Wang, Chem. Eng. J. 2023, 459, 141543.
- 20a) Y. J. Fang, X. Y. Yu, X. W. Lou, Angew. Chem., Int. Ed. 2018, 57, 9859; b) H. D. Shi, J. Q. Qin, K. Huang, P. F. Lu, C. F. Zhang, Y. F. Dong, M. Ye, Z. M. Liu, Z. S. Wu, Angew. Chem., Int. Ed. 2020, 59, 12147.
- 21B. Kim, J. Ahn, Y. Oh, J. Tan, D. Lee, J. K. Lee, J. Moon, J. Mater. Chem. A 2018, 6, 3028.
- 22a) T. D. Hatchard, J. R. Dahn, J. Electrochem. Soc. 2004, 151, A838; b) M. Gauthier, J. Danet, B. Lestriez, L. Roué, D. Guyomard, P. Moreau, J. Power Sources 2013, 227, 237.
- 23M. N. Obrovac, L. Christensen, Electrochem. Solid State Lett. 2004, 7, A93.
- 24J. Sung, N. Kim, J. Ma, J. H. Lee, S. H. Joo, T. Lee, S. Chae, M. Yoon, Y. Lee, J. Hwang, S. K. Kwak, J. Cho, Nat. Energy 2021, 6, 1164.
- 25J. Zhang, K. Zhang, J. Yang, G. H. Lee, J. Shin, V. Wing-hei Lau, Y. M. Kang, Adv. Energy Mater. 2018, 8, 1800283.
- 26Y. Jin, S. Li, A. Kushima, X. Q. Zheng, Y. M. Sun, J. Xie, J. Sun, W. J. Xue, G. M. Zhou, J. Wu, F. F. Shi, R. F. Zhang, Z. Zhu, K. P. So, Y. Cui, J. Li, Energy Environ. Sci. 2017, 10, 580.
- 27a) Z. S. He, L. A. Huang, J. F. Guo, S. E. Pei, H. B. Shao, J. M. Wang, Energy Storage Mater. 2020, 24, 362; b) R. Shao, Z. Sun, L. Wang, J. Pan, L. Yi, Y. Zhang, J. Han, Z. Yao, J. Li, Z. Wen, S. Chen, S.-L. Chou, D.-L. Peng, Q. Zhang, Angew. Chem., Int. Ed. 2024, 63, 202320183.
- 28Y. L. An, Y. Tian, C. K. Liu, S. L. Xiong, J. K. Feng, Y. T. Qian, ACS Nano 2022, 16, 4560.
- 29a) J. F. Guo, S. Pei, Z. S. He, L. A. Huang, T. Z. Lu, J. J. Gong, H. B. Shao, J. M. Wang, Electrochim. Acta 2020, 348, 136334; b) L. Q. Y. Xu, F. Arshad, R. J. Chen, F. Wu, L. Li, Energy Storage Mater. 2024, 66, 103199.
- 30a) J. Lin, L. S. Wang, Q. S. Xie, Q. Luo, D. L. Peng, C. B. Mullins, A. Heller, Angew. Chem., Int. Ed. 2023, 62, 202216557; b) Y. Zhai, Z. T. Zhong, N. N. Kuang, Q. Li, T. Z. Xu, J. X. He, H. M. Li, X. J. Yin, Y. R. Jia, Q. He, S. C. Wu, Q. H. Yang, J. Am. Chem. Soc. 2024, 146, 15209.
- 31a) M. Baek, J. Kim, J. Jin, J. W. Choi, Nat. Commun. 2021, 12, 6807; b) N. Qin, L. M. Jin, Y. Y. Lu, Q. Wu, J. S. Zheng, C. M. Zhang, Z. H. Chen, J. P. Zheng, Adv. Energy Mater. 2022, 12, 2103402.
- 32C. Y. Zhou, X. Z. Gong, Y. K. Feng, J. J. Lu, Y. L. Fu, Z. Wang, J. H. Liu, J. Colloid Interface Sci. 2022, 619, 158.
- 33D. M. Zhang, R. Yang, J. H. Zhou, W. P. Liu, H. Q. Qin, Z. J. Zhang, X. X. Lei, A. J. Lu, Z. X. Mo, L. Miao, F. Dang, Energy Storage Mater. 2023, 63, 102976.
- 34Y. F. Tian, S. J. Tan, C. P. Yang, Y. M. Zhao, D. X. Xu, Z. Y. Lu, G. Li, J. Y. Li, X. S. Zhang, C. H. Zhang, J. L. Tang, Y. Zhao, F. Y. Wang, R. Wen, Q. Xu, Y. G. Guo, Nat. Commun. 2023, 14, 7247.
- 35B. S. Parimalam, A. D. MacIntosh, R. Kadam, B. L. Lucht, J. Phys. Chem. C 2017, 121, 22733.
- 36L. Chen, X. He, H. Liu, L. Qian, S. H. Kim, J. Phys. Chem. C 2018, 122, 11385.
- 37a) K. Tasaki, K. Kanda, S. Nakamura, M. Ue, J. Electrochem. Soc. 2003, 150, A1628; b) A. L. Michan, M. Leskes, C. P. Grey, Chem. Mat. 2016, 28, 385.
- 38S. B. Tu, B. Zhang, Y. Zhang, Z. H. Chen, X. C. Wang, R. M. Zhan, Y. T. Ou, W. Y. Wang, X. R. Liu, X. R. Duan, L. Wang, Y. M. Sun, Nat. Energy 2023, 8, 1365.