Advanced Functional NiCo2S4@CoMo2S4 Heterojunction Couple as Electrode for Hydrogen Production via Energy-Saving Urea Oxidation
Corresponding Author
Njemuwa Nwaji
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02–106 Poland
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorBoka Fikadu
Department Chemistry, Chungnam National University, Daejeon, 34134 South Korea
Search for more papers by this authorMagdalena Osial
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02–106 Poland
Search for more papers by this authorMagdalena Warczak
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 street, Bydgoszcz, 85–326 Poland
Search for more papers by this authorZahra Moazzami Goudarzi
Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw, 02–106 Poland
Search for more papers by this authorMarianna Gniadek
Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., Warsaw, 02–093 Poland
Search for more papers by this authorSohrab Asgaran
Helmaco Sp. Z o.o. Company, Ostrobramska 101/335K, Warszawa, 04–041 Poland
Search for more papers by this authorCorresponding Author
Jaebeom Lee
Department Chemistry, Chungnam National University, Daejeon, 34134 South Korea
Department Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Michael Giersig
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02–106 Poland
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Njemuwa Nwaji
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02–106 Poland
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorBoka Fikadu
Department Chemistry, Chungnam National University, Daejeon, 34134 South Korea
Search for more papers by this authorMagdalena Osial
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02–106 Poland
Search for more papers by this authorMagdalena Warczak
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 street, Bydgoszcz, 85–326 Poland
Search for more papers by this authorZahra Moazzami Goudarzi
Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw, 02–106 Poland
Search for more papers by this authorMarianna Gniadek
Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., Warsaw, 02–093 Poland
Search for more papers by this authorSohrab Asgaran
Helmaco Sp. Z o.o. Company, Ostrobramska 101/335K, Warszawa, 04–041 Poland
Search for more papers by this authorCorresponding Author
Jaebeom Lee
Department Chemistry, Chungnam National University, Daejeon, 34134 South Korea
Department Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 South Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Michael Giersig
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02–106 Poland
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCo2S4/CoMo2S4 grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction. The Density Functional Theory (DFT) study reveals spontaneous transfer of charge at the heterointerface of NiCo2S4/CoMo2S4, which triggers the formation of localized electrophilic/nucleophilic regions and facilitates the adsorption of electron donating/electron withdrawing group in urea molecules during the UOR. The NiCo2S4/CoMo2S4// NiCo2S4/CoMo2S4 electrode pair required only a cell voltage of 1.17 and 1.18 V to deliver a current density of 10 and 100 mA cm−2 respectively in urea electrolysis cell and display very good stability. Tests performed in real urine samples show similar catalytic performance to urea electrolytes, making the work one of the best transition metal-based catalysts for UOR applications, promising both efficient hydrogen production and urea decomposition.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this work are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410848-sup-0001-SuppMat.docx2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Qian, W. Wang, G. Wang, X. He, Y. Feng, Z. Li, Y. Zhu, Y. Zhang, Small 2022, 18, 2200242.
- 2C.-Q. Han, J.-X. Guo, S. Sun, Z.-Y. Wang, L. Wang, X.-Y. Liu, Small 2024. 2405887.
- 3H. Li, M. Hu, B. Cao, P. Jing, B. Liu, R. Gao, J. Zhang, X. Shi, Y. Du, Small 2021, 17, 2006617.
- 4L. Wen, X. Zhang, J. Liu, X. Li, C. Xing, X. Lyu, W. Cai, W. Wang, Y. Li, Small 2019, 15, 1902373.
- 5L. Chen, W. Zhao, J. Zhang, M. Liu, Y. Jia, R. Wang, M. Chai, Small 2024, 20, 2403845.
- 6Q. Guo, J. Mao, J. Huang, Z. Wang, Y. Zhang, J. Hu, J. Dong, S. Sathasivam, Y. Zhao, G. Xing, H. Pan, Y. Lai, Y. Tang, Small 2020, 16, 1907029.
- 7C. Rao, H. Wang, K. Chen, H. Chen, S. Ci, Q. Xu, Z. Wen, Small 2023, 20, 2303300.
- 8S. Jiang, T. Xiao, C. Xu, S. Wang, H.-Q. Peng, W. Zhang, B. Liu, Y.-F. Song, Small 2023, 19, 2208027.
- 9J. Li, B. Sheng, Y. Chen, J. Yang, P. Wang, Y. Li, T. Yu, H. Pan, J. Song, L. Zhu, X. Wang, T. Ma, B. Zhou, Small 2024, 20, 2309906.
- 10T. Li, Q. Wang, J. Wu, Y. Sui, P. Tang, H. Liu, W. Zhang, H. Li, Y. Wang, A. Cabot, J. Liu, Small 2023, 20, 2306178.
- 11S. Liu, H. Zhang, H. Yu, K. Deng, Z. Wang, Y. Xu, L. Wang, H. Wang, Small 2023, 19, 2300388.
- 12X. Zhao, L. Dai, Q. Qin, F. Pei, C. Hu, N. Zheng, Small 2017, 13, 1602970.
- 13M. Tasleem, V. Singh, A. Tiwari, V. Ganesan, M. Sankar, Small 2024, 2401273.
- 14N. Nwaji, B. Fikadu, M. Osial, Z. M. Goudarzic, L. T. Tufa, J. Lee, M. Giersig, Int. J. Hydrogen Energy 2024, 86, 554.
- 15Z. Wang, L. Xu, F. Huang, L. Qu, J. Li, K. A. Owusu, Z. Liu, Z. Lin, B. Xiang, X. Liu, K. Zhao, X. Liao, W. Yang, Y.-B. Cheng, L. Mai, Adv. Eng. Mater. 2019, 9, 1900390.
- 16Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, G. Zhang, Adv. Funct. Mater. 2021, 31, 2103673.
- 17B. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem., Int. Ed. 2016, 55, 9913.
- 18H. Wen, Y. Liu, S. Liu, Z. Peng, X. Wu, H. Yuan, J. Jiang, B. Li, Small 2023, 20, 2305405.
- 19S. Barwe, J. Weidner, S. Cychy, D. M. Morales, S. Dieckhöfer, D. Hiltrop, J. Masa, M. Muhler, W. Schuhmann, Angew. Chem., Int. Ed. 2018, 57, 11460.
- 20M. Zhong, J. Yang, M. Xu, S. Ren, X. Chen, C. Wang, M. Gao, X. Lu, Small 2023, 20, 2304782.
- 21J. Liu, L. He, Z. Tao, S. Li, C. Wang, Y. Zhang, S. Zhang, M. Du, Z. Zhang, Small 2023, 20, 2306273.
- 22X. Gao, X. Bai, P. Wang, Y. Jiao, K. Davey, Y. Zheng, S.-Z. Qiao, Nat. Commun. 2023, 14, 5842.
- 23C.-J. Huang, H.-M. Xu, T.-Y. Shuai, Q.-N. Zhai, Z.-J. Zhang, G.-R. Li, Small 2023, 19, 2301130.
- 24B. Zhu, Z. Liang, R. Zou, Small 2020, 16, 1906133.
- 25Y. Liang, Q. Liu, A. M. Asiri, X. Sun, Electrochim. Acta 2015, 153, 456.
- 26L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, B. Zhang, Angew. Chem., Int. Ed. 2021, 60, 10577.
- 27N. Senthilkumar, G. Gnana kumar, A. Manthiram, Adv. Eng. Mater. 2018, 8, 1702207.
10.1002/aenm.201702207 Google Scholar
- 28W.-K. Han, J.-X. Wei, K. Xiao, T. Ouyang, X. Peng, S. Zhao, Z.-Q. Liu, Angew. Chem., Int. Ed. 2022, 61, e202206050.
- 29Y. Wang, C. Wang, H. Shang, M. Yuan, Z. Wu, J. Li, Y. Du, J. Colloid Interface Sci. 2022, 605, 779.
- 30H. Sun, W. Zhang, J.-G. Li, Z. Li, X. Ao, K.-H. Xue, K. K. Ostrikov, J. Tang, C. Wang, Appl. Catal. B 2021, 284, 119740.
- 31A. T. Miller, B. L. Hassler, G. G. Botte, J. Appl. Electrochem. 2012, 42, 925.
- 32G. Wang, Y. Ling, X. Lu, H. Wang, F. Qian, Y. Tongb, Y. Li, Energy Environ. Sci. 2012, 5, 8215.
- 33J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196.
- 34J. Qi, Y. Du, Q. Yang, J. Li, Y. Ma, Y. Ma, X. Zhao, J. Qiu, Nat. Commun. 2023, 14, 6263.
- 35F. Jalilehvand, Chem. Soc. Rev. 2006, 35, 1256.
- 36G. Zhao, K. Rui, S. X. Dou, W. Sun, J. Mater. Chem. A 2020, 8, 6393.
- 37Q. Zhang, F. M. D. Kazim, S. Ma, K. Qu, M. Li, Y. Wang, H. Hu, W. Cai, Z. Yang, Appl. Catal. B 2021, 280, 119436.
- 38S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing, L. Wang, J. Yu, H. Liu, C. Chen, L. Yang, Appl. Catal. B 2021, 299, 120638.
- 39Y.-L. Chen, G.-Y. Lee, D.-W. Tang, K. Huang, P.-Y. Lo, J.-H. Huang, E.-C. Cho, K.-C. Lee, Mater. Today Chem. 2023, 27, 101259.
- 40M. He, C. Feng, T. Liao, S. Hu, H. Wu, Z. Sun, ACS Appl. Mater. Interfaces 2020, 12, 2225.
- 41G. Nagaraju, S. C. Sekhar, G. S. Rama Raju, L. K. Bharat, J. S. Yu, J. Mater. Chem. A 2017, 5, 15808.
- 42L. Hou, Y. Shi, S. Zhu, M. Rehan, G. Pang, X. Zhang, C. Yuan, J. Mater. Chem. A 2017, 5, 133.
- 43Z. Cai, Y. Bi, E. Hu, W. Liu, N. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X.-Q. Yang, H. Wang, X. Sun, Adv. Energy Mater. 2018, 8, 1701694.
- 44H. J. Niu, L. Zhang, J. J. Feng, Q. L. Zhang, H. Huang, A. J. Wang, J. Colloid Interface Sci. 2019, 552, 744.
- 45I. Herrmann, U. I. Kramm, J. Radnik, S. F., P. Bogdanoff, J. Electrochem. Soc. 2009, 156, B1283.
- 46G. Nagaraju, G. S. R. Raju, Y. H. Ko, J. S. Yu, Nanoscale 2016, 8, 812.
- 47N. Nwaji, H. Kang, M. Goddati, L. T. Tufa, J. Gwak, A. Sharan, N. Singh, J. Lee, J. Mater. Chem. A 2023, 11, 3640.
- 48U. N. Pan, T. I. Singh, D. R. Paudel, C. C. Gudal, N. H. Kim, J. H. Lee, J. Mater. Chem. A 2020, 8, 19654.
- 49J. Zhang, Y. Li, T. Zhu, Y. Wang, J. Cui, J. Wu, H. Xu, X. Shu, Y. Qin, H. Zheng, P. M. Ajayan, Y. Zhang, Y. Wu, ACS Appl. Mater. Interfaces 2018, 10, 31330.
- 50X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew. Chem., Int. Ed. 2016, 55, 6290.
- 51N. Nwaji, B. Fikadu, M. Osiala, Z. M. Goudarzic, L. T. Tufa, J. Lee, M. Giersig, Int. J. Hydrogen Energy 2024, 86, 554.
- 52Z.-Y. Yu, C. Lang, M.-R. Gao, Y. Chen, Q. Fu, Y. Duan, S.-H. Yu, Energy Environ. Sci. 2018, 11, 1890.
- 53R. V. Mom, L. J. Falling, O. Kasian, G. Algara-Siller, D. Teschner, R. H. Crabtree, A. Knop-Gericke, K. J. J. Mayrhofer, J.-J. Velasco-Vélez, T. E. Jones, ACS Catal. 2022, 12, 5174.
- 54O. Kasian, S. Geiger, T. Li, J.-P. Grote, K. Schweinar, S. Zhang, C. Scheu, D. Raabe, S. Cherevko, B. Gault, K. J. J. Mayrhofer, Energy Environ. Sci. 2019, 12, 3548.
- 55B. Zhu, Z. Liang, R. Zou, Small 2020, 16, e1906133.
- 56W. Liao, Q. Zhao, S. Wang, Y. Ran, H. Su, R. Gan, S. Lu, Y. Zhang, J. Catal. 2023, 428, 115161.
- 57G. Zhan, L. Hu, H. Li, J. Dai, L. Zhao, Q. Zheng, X. Zou, Y. Shi, J. Wang, W. Hou, Y. Yao, L. Zhang, Nat. Commun. 2024, 15, 5918.
- 58S. Kim, I. Jo, D. C. Dillen, D. A. Ferrer, B. Fallahazad, Z. Yao, S. K. Banerjee, E. Tutuc, Phys. Rev. Lett. 2012, 108, 116404.
- 59L. Zhang, L. Wang, H. Lin, Y. Liu, J. Ye, Y. Wen, A. Chen, L. Wang, F. Ni, Z. Zhou, S. Sun, Y. Li, B. Zhang, Angew. Chem., Int. Ed. 2019, 131, 16976.
- 60H. Jiang, M. Sun, S. Wu, B. Huang, C.-S. Lee, W. Zhang, Adv. Funct. Mater. 2021, 31, 2104951.
- 61A. Kumar, X. Liu, J. Lee, B. Debnath, A. R. Jadhav, X. Shao, V. Q. Bui, Y. Hwang, Y. Liu, M. G. Kim, H. Lee, Energy Environ. Sci. 2021, 14, 6494.