Deprotonation-Constructed Instant Gelation Coating for Staphylococcus Disinfection and Preservation of Fresh Food in Multiple Scenarios
Wei Guan
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Xiangmei Liu
Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Youyi Avenue 368#, Wuhan, 430062 China
School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShengli Zhu
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorZhaoyang Li
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorHui Jiang
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorZhenduo Cui
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorYufeng Zheng
School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Shuilin Wu
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWei Guan
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Xiangmei Liu
Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Youyi Avenue 368#, Wuhan, 430062 China
School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShengli Zhu
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorZhaoyang Li
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorHui Jiang
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorZhenduo Cui
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
Search for more papers by this authorYufeng Zheng
School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Shuilin Wu
School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072 China
School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The ancient proverb “disease enters through the mouth” elucidates the connection between food and pathogens, underscoring the pivotal role of food preservation in preventing foodborne diseases. Drawing inspiration from ancient food preservation techniques such as waxing and the use of spices, a novel approach combining the deprotonation-induced solid–liquid phase separation of natural polymer solutions with the solubilization of plant–derived antibacterial compounds has been developed. The “two-step soaking” construction strategy enables the creation of biodegradable and adaptable for hydrogel coatings with micro-scale thickness. These multifunctional coatings can be applied to the surfaces of fresh fruits, vegetables, and meats in 35 s, providing both moisture retention and antioxidant protection. The coating's versatility allows for the targeted can achieve the elimination of various Staphylococcus and other bacterial strains through the selection of bactericides with differing antibacterial mechanisms. The scalability of this approach offers significant potential for broad applications in sterilization and food preservation in across diverse contexts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410268-sup-0001-SuppMat.docx27.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. N. Fones, D. P. Bebber, T. M. Chaloner, W. T. Kay, G. Steinberg, S. J. Gurr, Nat. Food 2020, 1, 332.
- 2A. E. Mather, M. W. Gilmour, S. W. J. Reid, N. P. French, Nat. Rev. Microbiol. 2024, 22, 543.
- 3G. Schmidt-Traub, M. Obersteiner, A. Mosnier, Nature 2019, 569, 181.
- 4S. L. R. Garcia, V. Raghavan, Crit. Rev. Food Sci. 2022, 62, 6446.
- 5 W. H. Organization, (WHO). Foodborne diseases, https://www.who.int/health-topics/foodborne-diseases#tab=tab_1 (accessed: October 2024).
- 6J. Kadariya, T. C. Smith, D. Thapaliya, Biomed Res. Int. 2014, 2014, 827965.
- 7J. L. Self, R. E. Luna-Gierke, A. Fothergill, K. G. Holt, A. R. Vieira, Epidemiol. Infect. 2017, 145, 2980.
- 8W. Li, S. M. Pires, Z. Liu, X. Ma, J. Liang, Y. Jiang, J. Chen, J. Liang, S. Wang, L. Wang, Y. Wang, C. Meng, X. Huo, Z. Lan, S. Lai, C. Liu, H. Han, J. Liu, P. Fu, Y. Guo, Food Control 2020, 118, 107359.
- 9P. Chowdhury, S. K. Paul, S. Kaisar, M. A. Moktadir, Transport. Res. Part E-Log. 2021, 148, 102271.
- 10J. A. Gilbert, E. M. Hartmann, Nat. Rev. Microbiol. 2024, 22, 742.
- 11O. S. Darwish, M. R. Ali, E. Khojah, B. N. Samra, K. M. Ramadan, M. M. El-Mogy, Horticulturae 2021, 7, 568.
- 12P. Qu, M. Zhang, K. Fan, Z. Guo, Crit. Rev. Food Sci. 2022, 62, 51.
- 13A. Nasser, S. Jahanbakhshi, M. M. S. Dallal, M. Banar, A. Sattari-Maraji, T. Azimi, Curr. Pharm. Biotechno. 2023, 24, 1898.
- 14I. R. S. Vieira, A. P. A. Carvalho, C. A. Conte-Junior, Compr. Rev. Food Sci. Food Saf. 2022, 21, 3673.
- 15C. Bai, L. Liu, J. Guo, L. Zeng, Y. Guo, Environ. Res. 2022, 215, 114390.
- 16 E. U. R. O. P. A. EUR-Lex, Regulation-528/2012-EN-EUR-Lex, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32012R0528 (accessed: October 2024).
- 17E. Budu-Amoako, R. F. Ablett, J. Harris, J. Delves-Broughton, J. Food Protect. 1999, 62, 46.
- 18M. A. Cerqueira, M. J. Costa, C. Fuciños, L. M. Pastrana, A. A. Vicente, Food Bioprocess Tech 2014, 7, 1472.
- 19D. G. J. Larsson, C. Flach, Nat. Rev. Microbiol. 2022, 20, 257.
- 20S. Reardon, Science 2020, https://doi.org/10.1126/science.abc2995.
10.1126/science.abc2995 Google Scholar
- 21J. Maillard, M. Pascoe, Nat. Rev. Microbiol. 2024, 22, 4.
- 22A. S. Lee, H. Lencastre, J. Garau, J. Kluytmans, S. Malhotra-Kumar, A. Peschel, S. Harbarth, Nat. Rev. Dis. Primers 2018, 4, 18033.
- 23L. Matthies, Eur. J. Lipid Sci. Tech. 2001, 103, 239.
- 24D. Gottardi, D. Bukvicki, S. Prasad, A. K. Tyagi, Front. Microbiol. 2016, 7, 1394.
- 25W. Guan, C. Gong, S. Wu, Z. Cui, Y. Zheng, Z. Li, S. Zhu, X. Liu, Adv. Mater. 2024, 36, 2306589.
- 26J. Li, Z. Zhou, X. Liu, Y. Zheng, C. Li, Z. Cui, K. W. K. Y., H. Zhou, J. Zou, Z. Li, S. Zhu, Y. Liang, X. Wang, S. Wu, Matter 2021, 4, 3030.
- 27J. Fu, X. Liu, Z. Cui, Y. Zheng, H. Jiang, Y. Zhang, Z. Li, Y. Liang, S. Zhu, P. K. Chu, K. W. K. Yeung, S. Wu, Natl. Sci. Rev. 2023, 10, nwac221.
- 28Y. Qiao, Y. Xu, X. Liu, Y. Zheng, B. Li, Y. Han, Z. Li, K. W. K. Yeung, Y. Liang, S. Zhu, Z. Cui, S. Wu, Nat. Commun. 2022, 13, 2461.
- 29S. Jung, Y. Cui, M. Barnes, C. Satam, S. Zhang, R. A. Chowdhury, A. Adumbumkulath, O. Sahin, C. Miller, S. M. Sajadi, L. M. Sassi, Y. Ji, M. R. Bennett, M. Yu, J. Friguglietti, F. A. Merchant, R. Verduzco, S. Roy, R. Vajtai, J. C. Meredith, J. P. Youngblood, N. Koratkar, M. M. Rahman, P. M. Ajayan, Adv. Mater. 2020, 32, 1908291.
- 30P. Ma, X. Jia, X. Zhang, Y. Li, Y. He, T. Li, C. Wu, Y. H. Joo, S. Lee, T. Meng, A. H. Brozena, S. Li, Q. Wang, C. Wei, Matter 2024, 7, 2567.
- 31G. Porras, F. Chassagne, J. T. Lyles, L. Marquez, M. Dettweiler, A. M. Salam, T. Samarakoon, S. Shabih, D. R. Farrokhi, C. L. Quave, Chem. Rev. 2021, 121, 3495.
- 32J. Zheng, R. Fan, H. Wu, H. Yao, Y. Yan, J. Liu, L. Ran, Z. Sun, L. Yi, L. Dang, P. Gan, P. Zheng, T. Yang, Y. Zhang, T. Tang, Y. Wang, Nat. Commun. 2019, 10, 1604.
- 33Q. Chang, M. A. Darabi, Y. Liu, Y. He, W. Zhong, K. Mequanin, B. Li, F. Lu, M. M. Q. Xing, J. Mater. Chem. A 2019, 7, 24626.
- 34T. Jiang, S. Chen, J. Xu, Y. Zhang, H. Fu, Q. Ling, Y. Xu, X. Chu, R. Wang, L. Hu, H. Li, W. Huang, L. Bian, P. Zhao, F. Wei, Nat. Commun. 2024, 15, 5460.
- 35M. M. Kasprzak, A. Erxlebenc, J. Ochockia, RSC Adv. 2015, 5, 45853.
- 36T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 37T. Lu, J. Chem. Phys. 2024, 161, 082503.
- 38J. Larsen, C. L. Raisen, X. Ba, N. J. Sadgrove, G. F. Padilla-González, M. S. J. Simmonds, I. Loncaric, H. Kerschner, P. Apfalter, R. Hartl, A. Deplano, S. Vandendriessche, B. Č. Bolfíková, P. Hulva, M. C. Arendrup, R. K. Hare, C. Barnadas, M. Stegger, R. N. Sieber, R. L. Skov, A. Petersen, Ø. Angen, S. L. Rasmussen, C. Espinosa-Gongora, F. M. Aarestrup, L. J. Lindholm, S. M. Nykäsenoja, F. Laurent, K. Becker, B. Walther, et al., Nature 2022, 602, 135.
- 39V. Choi, J. L. Rohn, P. Stoodley, D. Carugo, E. Stride, Nat. Rev. Microbiol. 2023, 21, 555.
- 40Q. Hu, F. Zhou, N. K. Ly, J. Ordyna, T. Peterson, Z. Fan, S. Wang, ACS Nano 2023, 17, 8586.
- 41M. Y. Coseteng, C. Y. Lee, J. Food Sci. 1987, 52, 985.