Picofluidic Electro-Osmosis Measurement of Cell Membrane Mechanical Properties
Xiao-Yuan Wang
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorZe-Rui Zhou
Department of Chemistry, University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorLi-Juan Gong
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorMan-Sha Wu
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorShi-Yi Zhang
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorJian Lv
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Search for more papers by this authorBin-Bin Chen
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorDa-Wei Li
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Ruo-Can Qian
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]
Search for more papers by this authorXiao-Yuan Wang
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorZe-Rui Zhou
Department of Chemistry, University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorLi-Juan Gong
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorMan-Sha Wu
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorShi-Yi Zhang
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorJian Lv
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 P. R. China
Search for more papers by this authorBin-Bin Chen
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorDa-Wei Li
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Ruo-Can Qian
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Cells connect with their internal and external environments through plasma membranes, and the mechanical properties of cell membranes govern numerous biological events. Membrane detection techniques such as optical or magnetic tweezers have revealed mechanical strength by membrane-anchored modifications, but it remains challenging to develop label-free methods to reduce the influence of exogenous interference. Here picofluidic electro-osmosis measurement (PEOM), which enables direct and efficient sensing of cell membrane mechanical properties by using a glass nanopipette without labeling, is presented. By generating a picoliter electroosmotic fluid at the nanopipette tip, periodic cell membrane vibration modes are observed from current traces, which carry information on membrane mechanical properties to indicate its biological state. Based on characteristic peaks in the frequency domain, a theoretical framework to describe the vibration modes, which contains two ideal spring vibrator models corresponding to stretching and bending vibrations of cell membrane respectively, is developed. Notably, the PEOM strategy represents a label-free approach to reveal the mechanical properties of living cell membranes from two dimensions, which is completely different from other methods. Additionally, the exciting potential of PEOM is demonstrated for label-free observation of membrane mechanical property changes during different bioprocesses, including cytoskeletal alteration, membrane tension change, and mechanical polarization.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410095-sup-0001-SupMat.docx7.7 MB | Supporting Information |
smll202410095-sup-0002-MovieS1.mp410.6 MB | Supplementary Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) A. J. Bruce Alberts, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter, Molecular Biology of the Cell, Garland Science, New York 2002; b) G. Karp, Cell and molecular biology: concepts and experiments, John Wiley & Sons, Hoboken, NJ 2009; c) K. Simons, D. Lingwood, U. Coskun, M. Grzybek, FEBS J. 2009, 276, 53; d) A. Schmid, H. Kortmann, P. S. Dittrich, L. M. Blank, Curr. Opin. Biotechnol. 2010, 21, 12.
- 2a) G. van Meer, D. R. Voelker, G. W. Feigenson, Nat. Rev. Mol. Cell Biol. 2008, 9, 112;
b) P. L. Yeagle, The Structure of Biological Membranes, CRC Press, Boca Raton, FL 2004.
10.1201/9781420040203 Google Scholar
- 3a) S. J. Singer, G. L. Nicolson, Science 1972, 175, 720; b) V. Swaminathan, K. Mythreye, E. T. O'Brien, A. Berchuck, G. C. Blobe, R. Superfine, Cancer Res. 2011, 71, 5075.
- 4a) R. Dimova, Adv. Colloid Interface Sci. 2014, 208, 225; b) V. Mercier, J. Larios, G. Molinard, A. Goujon, S. Matile, J. Gruenberg, A. Roux, Nat. Cell Biol. 2020, 22, 947; c) N. Mohandas, E. Evans, Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 787; d) R. Phillips, T. Ursell, P. Wiggins, P. Sens, Nature 2009, 459, 379; e) S. Byun, S. Son, D. Amodei, N. Cermak, J. Shaw, J. H. Kang, V. C. Hecht, M. M. Winslow, T. Jacks, P. Mallick, S. R. Manalis, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 7580; f) Q. Zhang, F. Lin, J. Huang, C. Xiong, Sci China Life Sci 2022, 65, 2031.
- 5a) E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R. S. Chadwick, Biophys. J. 2002, 82, 2798; b) J. B. Fournier, Eur. Phys. J. B 1999, 11, 261; c) L. V. Boas, V. Faustino, R. Lima, J. M. Miranda, G. Minas, C. S. Fernandes, S. O. Catarino, Micromachines 2018, 9, 384.
- 6a) K. Mandal, K. Pogoda, S. Nandi, S. Mathieu, A. Kasri, E. Klein, F. Radvanyi, B. Goud, P. A. Janmey, J.-B. Manneville, Nano Lett. 2019, 19, 7691; b) V. Rizzuto, A. Mencattini, B. Álvarez-González, D. Di Giuseppe, E. Martinelli, D. Beneitez-Pastor, M. d. M. Mañú-Pereira, M. J. Lopez-Martinez, J. Samitier, Sci. Rep. 2021, 11, 13553; c) M. Li, L. Liu, N. Xi, Y. Wang, Chin. Sci. Bull. 2014, 59, 4020.
- 7a) Y. Ding, G.-K. Xu, G.-F. Wang, Sci. Rep. 2017, 7, 45575; b) D. Chang, T. Hirate, C. Uehara, H. Maruyama, N. Uozumi, F. Arai, Microsc. Microanal. 2021, 27, 392; c) Y. Han, J. Wang, K. Wang, S. Dong, Micro Nano Lett 2016, 11, 881; d) X. Wang, H. Liu, M. Zhu, C. Cao, Z. Xu, Y. Tsatskis, K. Lau, C. Kuok, T. Filleter, H. McNeill, C. A. Simmons, S. Hopyan, Y. Sun, J. Cell Sci. 2018, 131, jcs209627.
- 8a) R. Conroy, Handbook of Molecular Force Spectroscopy (Eds.: A. Noy), Springer US, Boston, MA 2008, pp. 23;
10.1007/978-0-387-49989-5_2 Google Scholarb) K. C. Neuman, A. Nagy, Nat. Methods 2008, 5, 491; c) Y. Liang, G. Liang, Y. Xiang, J. Lamstein, R. Gautam, A. Bezryadina, Z. Chen, Phys. Rev. Appl. 2019, 12, 064060; d) A. Tajik, Y. Zhang, F. Wei, J. Sun, Q. Jia, W. Zhou, R. Singh, N. Khanna, A. S. Belmont, N. Wang, Nat. Mater. 2016, 15, 1287.
- 9a) R. Qian, M. Wu, Z. Yang, Y. Wu, W. Guo, Z. Zhou, X. Wang, D. Li, Y. Lu, Nat. Commun. 2024, 15, 2051; b) J. Lv, X. Y. Wang, X. Y. Zhou, D. W. Li, R. C. Qian, Anal. Chem. 2022, 94, 13860; c) R. Pan, D. Wang, K. Liu, H. Y. Chen, D. Jiang, J. Am. Chem. Soc. 2022, 144, 17558; d) K. Hu, K. L. Le Vo, A. Hatamie, A. G. Ewing, Angew. Chem., Int. Ed. Engl. 2022, 61, 202113406.
- 10a) B.-B. Chen, J. Lv, X.-Y. Wang, R.-C. Qian, ChemBioChem 2020, 21, 650; b) L.-J. Gong, J. Lv, X.-Y. Wang, X. Wu, D.-W. Li, R.-C. Qian, ChemBioChem 2020, 21, 650; c) X. Y. Wang, J. Lv, Q. Hong, Z. R. Zhou, D. W. Li, R. C. Qian, Biosens. Bioelectron. 2024, 259, 116385.
- 11a) Y. Ma, D. Wang, Anal. Chem. 2021, 93, 13967; b) G. Wang, W. Brown, M. Kvetny, Curr. Opin. Electrochem. 2019, 13, 112; c) C. Wei, A. J. Bard, S. W. Feldberg, Anal. Chem. 1997, 69, 4627.
- 12a) R. M. M. Smeets, U. F. Keyser, N. H. Dekker, C. Dekker, Proc. Natl. Acad. Sci. USA 2008, 105, 417; b) X. Li, Y.-L. Ying, X.-X. Fu, Y.-J. Wan, Y.-T. Long, Angew. Chem., Int. Ed. 2021, 60, 24582.
- 13a) U. Eilers, J. Klumperman, H. P. Hauri, J. Cell Biol. 1989, 108, 13; b) D. G. I. Kingston, Pharmacol. Ther. 1991, 52, 1.