Full-Color Gamut White Light Emission From Mn-doped Cs3Cu2X5 Nanocrystals via Lattice Engineering
Chang-Xu Li
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorSeung-Bum Cho
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorSang-Hyun Sohn
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorDo-Hyun Kwak
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorCorresponding Author
Il-Kyu Park
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorChang-Xu Li
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorSeung-Bum Cho
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorSang-Hyun Sohn
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorDo-Hyun Kwak
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
Search for more papers by this authorCorresponding Author
Il-Kyu Park
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
Cs3Cu2X5-based lead-free material (X = Cl, Br, and I) nanocrystals (NCs) are promising eco-friendly materials for various optoelectronic applications. Although manganese (Mn2+) ion doping into Cs3Cu2X5 may widen the emission color gamut, incorporating them is challenging because of the robust tetrahedral [CuX4] and triangular [CuX3] structures. This paper addresses this challenge using a lattice engineering strategy, which induces appropriate lattice shrinkage by replacing I− with Cl− in the Cs3Cu2I5 NC structure. The promotion effect of Cl− substitution on the Mn2+ doping is confirmed by structural and chemical analysis, indicating the formation of highly crystalline NCs. The Mn-doping modifies the electronic structures of Cs3Cu2X5 by reducing the band gap energy and forming effective energy transition pathways. The emission range of the NCs is expanded from blue to orange and finally manifest full-color gamut white light emission. The continuous broad spectrum is attributed to the combined blue emission of self-trapped excitons and the yellow-orange emission of the Mn2+ d–d energy transition. A white light-emitting diode with Mn-doped Cs3Cu2X5 NCs as a color conversion layer exhibit stable white emission with CIE coordinates of (0.34, 0.32) and a correlated color temperature of 5010 K, closely matching daylight conditions and is applied as an intelligent artificial sunlight.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408468-sup-0001-SuppMat.docx35 MB | Supporting Information |
smll202408468-sup-0002-VideoS1.mp427.9 MB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245.
- 2X. Zhuang, D. Zhou, Y. Jia, S. Liu, J. Liang, Y. Lin, H. Hou, D. Qian, T. Zhou, X. Bai, H. Song, Adv. Mater. 2024, 36, 2403257.
- 3Y. Sun, L. Ge, L. Dai, C. Cho, J. Orri, K. Ji, S. Zelewski, Y. Liu, A. Mirabelli, Y. Zhang, J.-Y. Huang, Y. Wang, K. Gong, M. Lai, L. Zhang, D. Yang, J. Lin, E. Tennyson, C. Ducati, S. Stranks, L.-S. Cui, N. Greenham, Nature 2023, 615, 830.
- 4M. Ahmadi, T. Wu, B. Hu, Adv. Mater. 2017, 29, 1605242.
- 5S. B. Cho, J. W. Jung, Y. S. Kim, C. H. Cho, I. K. Park, CrystEngComm 2021, 23, 2746.
- 6S. B. Cho, J. I. Sohn, S. S. Lee, S. G. Moon, B. Hou, I. K. Park, J. Mater. Chem. C 2021, 9, 7027.
- 7D. H. Kwak, S. B. Cho, C. X. Li, D. H. Kim, I. K. Park, Vacuum 2024, 219, 112713.
- 8Y. Wang, N. Ding, D. Zhou, W. Xu, R. Sun, W. Li, Y. Wang, L. Sun, S. Hu, H. Song, Chem. Eng. J. 2024, 487, 150347.
- 9L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang, S. P. Phang, K. Weber, T. White, D. Macdonald, K. Catchpole, H. Shen, Nat. Rev. Mater. 2023, 8, 261.
- 10H. Li, Y. Feng, M. Zhu, Y. Gao, C. Fan, Q. Cui, Q. Cai, K. Yang, H. He, X. Dai, J. Huang, Z. Ye, Nat. Nanotechnol. 2024, 19, 16.
- 11A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 2016, 15, 247.
- 12K. Ding, H. Ye, C. Su, Y.-A. Xiong, G. Du, Y.-M. You, Z.-X. Zhang, S. Dong, Y. Zhang, D.-W. Fu, Nat. Commun. 2023, 14, 2863.
- 13J. Cao, F. Yan, Energy Environ. Sci. 2021, 14, 1286.
- 14I. López-Fernández, D. Valli, C. Y. Wang, S. Samanta, T. Okamoto, Y. T. Huang, K. Sun, Y. Liu, V. S. Chirvony, A. Patra, J. Zito, Adv. Funct. Mater. 2023, 34, 2307896.
- 15J. W. Min, T. Samanta, A. Y. Lee, Y.-K. Jung, N. S. M. Viswanath, Y. R. Kim, H. B. Cho, J. Y. Moon, S. H. Jang, J. H. Kim, W. B. Im, Small 2024, 20, 202402951.
- 16T. Samanta, N. S. M. Viswanath, H. W. Kim, S. W. Jang, J. H. Han, S. B. Cho, W. B. Im, Chem. Eng. J. 2024, 484, 149697.
- 17T. Samanta, A. N. Yadav, J. H. Han, M. Kim, S. W. Jang, N. S. M. Viswanath, W. B. Im, Adv. Opt. Mater. 2024, 12, 2400909.
- 18W. F. Yang, F. Igbari, Y. H. Lou, Z. K. Wang, L. S. Liao, Adv. Energy Mater. 2020, 10, 1902584.
- 19T. Zhu, Y. Yang, X. Gong, ACS Appl. Mater. Interfaces 2020, 12, 26776.
- 20T. He, Y. Zhou, X. Wang, J. Yin, L. Gutiérrez-Arzaluz, J. X. Wang, Y. Zhang, O. M. Bakr, O. F. Mohammed, ACS Energy Lett. 2022, 7, 2753.
- 21C. Pareja-Rivera, D. Solis-Ibarra, Adv. Opt. Mater. 2021, 9, 2100633.
- 22L. Wang, Z. Shi, Z. Ma, D. Yang, F. Zhang, X. Ji, M. Wang, X. Chen, G. Na, S. Chen, D. Wu, Y. Zhang, X. Li, L. Zhang, C. Shan, Nano Lett. 2020, 20, 3568.
- 23C. X. Li, S. B. Cho, S. H. Sohn, I. K. Park, J. Alloys Compd. 2024, 973, 172925.
- 24F. Jiang, Z. Wu, M. Lu, Y. Gao, X. Li, X. Bai, Y. Ji, Y. Zhang, Adv. Mater. 2023, 35, 22011088.
- 25M. H. Du, ACS Energy Lett. 2020, 5, 464.
- 26C. X. Li, S. B. Cho, D. H. Kim, I. K. Park, Chem. Mater. 2022, 34, 6921.
- 27Z. Luo, Q. Li, L. Zhang, X. Wu, L. Tan, C. Zou, Y. Liu, Z. Quan, Small 2019, 15, 1905226.
- 28L. Lian, M. Zheng, P. Zhang, Z. Zheng, K. Du, W. Lei, J. Gao, G. Niu, D. Zhang, T. Zhai, S. Jin, J. Tang, X. Zhang, J. Zhang, Chem. Mater. 2020, 32, 3462.
- 29X. Zhang, L. Li, Z. Sun, J. Luo, Chem. Soc. Rev. 2019, 48, 517.
- 30M. Lyu, J.-H. Yun, P. Chen, M. Hao, L. Wang, Adv. Energy Mater. 2017, 7, 1602512.
- 31A. K. Guria, S. K. Dutta, S. Das Adhikari, N. Pradhan, ACS Energy Lett. 2017, 2, 1014.
- 32R. Yun, H. Yang, W. Sun, L. Zhang, X. Liu, X. Zhang, X. Li, Laser Photonics Rev. 2022, 16, 2200524.
- 33V. Proshchenko, Y. Dahnovsky, Chem. Phys. 2015, 461, 58.
- 34K. Gahlot, K. R. Pradeep, A. Camellini, G. Sirigu, M. Zavelani-Rossi, A. Singh, U. V. Waghmare, R. Viswanatha, ACS Energy Lett. 2019, 4, 729.
- 35D. Ricciarelli, D. Meggiolaro, P. Belanzoni, A. A. Alothman, E. Mosconi, F. De Angelis, ACS Energy Lett. 2021, 6, 1869.
- 36Q. Li, S. Ji, X. Yuan, J. Li, Y. Fan, J. Zhang, J. Zhao, H. Li, J. Phys. Chem. C 2019, 123, 14849.
- 37S. Das Adhikari, A. K. Guria, N. Pradhan, J. Phys. Chem. Lett. 2019, 10, 2250.
- 38S. K. Dutta, A. Dutta, S. Das Adhikari, N. Pradhan, ACS Energy Lett. 2019, 4, 343.
- 39J. Meng, Z. Lan, W. Lin, M. Liang, X. Zou, Q. Zhao, H. Geng, I. E. Castelli, S. E. Canton, T. Pullerits, K. Zheng, Chem. Sci. 2022, 13, 1734.
- 40J. Babu, K. Kaliyamoorthy, G. Kaur, A. Shukla, A. Kaur, T. Goswami, N. Ghorai, H. N. Ghosh, J. Phys. Chem. Lett. 2021, 12, 302.
- 41B. Su, M. S. Molokeev, Z. Xia, J. Phys. Chem. Lett. 2020, 11, 2510.
- 42D. Yuan, ACS Appl. Mater. Interfaces 2020, 12, 38333.
- 43Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi, D. H. Son, Nano Lett. 2018, 18, 3716.
- 44J. Shamsi, Z. Dang, P. Ijaz, A. L. Abdelhady, G. Bertoni, I. Moreels, L. Manna, Chem. Mater. 2018, 30, 79.
- 45X. Zhuang, D. Zhou, S. Liu, Z. Shi, R. Sun, J. Liang, Y. Jia, S. Bian, Z. Liu, H. Song, Adv. Mater. 2023, 35, 2302393.
- 46W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 2016, 138, 14954.
- 47Y. Hui, S. Chen, R. Lin, W. Zheng, F. Huang, Mater. Chem. Front. 2021, 5, 7088.
- 48H. Li, X. Liu, D. Zhou, B. Dong, L. Xu, X. Bai, H. Song, Adv. Mater. 2023, 35, 2300118.
- 49T. Wang, D. Zhou, Z. Yu, T. Zhou, R. Sun, Y. Wang, X. Sun, Y. Wang, Y. Shao, H. Song, Energy. Mater. Adv. 2023, 4, 0024.
- 50Y. Yang, J. Wu, T. Zhou, Y. Wang, J. Zheng, R. Liu, J. Hou, X. Li, L. Wang, W. Jiang, H. Chen, J. Mater. Chem. C 2023, 11, 9850.
- 51J. Myers, G. O. Burr, J. Gen. Physiol. 1940, 24, 45.
- 52A. Baidya, T. Akter, M. R. Islam, A. K. M. A. Shah, M. A. Hossain, M. A. Salam, S. I. Paul, Heliyon 2021, 7, e08525.