Defect Engineering Centrosymmetric 2D Material Flexocatalysts
Yu-Ching Chen
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Ph.D. Program in Prospective Functional Materials Industry, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Search for more papers by this authorPo-Han Chen
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Search for more papers by this authorYin-Song Liao
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Tsing Hua Interdisciplinary Program, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Search for more papers by this authorJyh-Pin Chou
Department of Physics, National Changhua University of Education, No. 1 Jin-De Road, Changhua, 500 Taiwan
Search for more papers by this authorCorresponding Author
Jyh Ming Wu
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
High Entropy Materials Center, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
E-mail: [email protected]
Search for more papers by this authorYu-Ching Chen
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Ph.D. Program in Prospective Functional Materials Industry, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Search for more papers by this authorPo-Han Chen
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Search for more papers by this authorYin-Song Liao
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Tsing Hua Interdisciplinary Program, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
Search for more papers by this authorJyh-Pin Chou
Department of Physics, National Changhua University of Education, No. 1 Jin-De Road, Changhua, 500 Taiwan
Search for more papers by this authorCorresponding Author
Jyh Ming Wu
Department of Materials Science and Engineering, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
High Entropy Materials Center, National Tsing Hua University, 101 Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan
E-mail: [email protected]
Search for more papers by this authorAbstract
In this study, the flexoelectric characteristics of 2D TiO2 nanosheets are examined. The theoretical calculations and experimental results reveal an excellent strain-induced flexoelectric potential (flexopotential) by an effective defect engineering strategy, which suppresses the recombination of electron–hole pairs, thus substantially improving the catalytic activity of the TiO2 nanosheets in the degradation of Rhodamine B dye and the hydrogen evolution reaction in a dark environment. The results indicate that strain-induced bandgap reduction enhances the catalytic activity of the TiO2 nanosheets. In addition, the TiO2 nanosheets degraded Rhodamine B, with kobs being ≈1.5 × 10−2 min−1 in dark, while TiO2 nanoparticles show only an adsorption effect. 2D TiO2 nanosheets achieve a hydrogen production rate of 137.9 µmol g−1 h−1 under a dark environment, 197% higher than those of TiO2 nanoparticles (70.1 µmol g−1 h−1). The flexopotential of the TiO2 nanosheets is enhanced by increasing the bending moment, with excellent flexopotential along the y-axis. Density functional theory is used to identify the stress-induced bandgap reduction and oxygen vacancy formation, which results in the self-dissociation of H2O on the surface of the TiO in the dark. The present findings provide novel insights into the role of TiO2 flexocatalysis in electrochemical reactions.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202401116-sup-0001-SuppMat.pdf4.4 MB | Supporting Information |
smll202401116-sup-0002-VideoS1.mp43.1 MB | Supplemental Video 1 |
smll202401116-sup-0003-VideoS2.mp41.4 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) A. Fujishima, K. Honda, Nature 1972, 238, 37; b) X. B. Chen, S. H. Shen, L. J. Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503; c) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269; d) Y. X. Shi, Q. Zhao, J. Y. Li, G. Y. Gao, J. F. Zhi, Applied Catalysis B-Environmental 2022, 308, 121216.
- 2M. Durovic, J. Hnat, K. Bouzek, J. Power Sources 2021, 493, 229708.
- 3R. J. Ouimet, J. R. Glenn, D. De Porcellinis, A. R. Motz, M. Carmo, K. E. Ayers, ACS Catal. 2022, 12, 6159.
- 4Z. L. Wang, J. Song, Science 2006, 312, 242.
- 5W. Z. Wu, L. Wang, Y. L. Li, F. Zhang, L. Lin, S. M. Niu, D. Chenet, X. Zhang, Y. F. Hao, T. F. Heinz, J. Hone, Z. L. Wang, Nature 2014, 514, 470.
- 6a) X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102; b) F. R. Fan, W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283.
- 7a) M. B. Starr, X. Wang, 2013, 3, 2160; b) H. D. Li, Y. H. Sang, S. J. Chang, X. Huang, Y. Zhang, R. S. Yang, H. D. Jiang, H. Liu, Z. L. Wang, Nano Letters 2015, 15, 2372; c) H. Y. Lin, K. T. Le, P. H. Chen, J. M. Wu, Appl Catal B-Environ 2022, 317, 121717.
- 8Y. C. Wang, J. M. Wu, Adv. Funct. Mater. 2020, 30, 1907619.
- 9a) X. Y. Xue, W. L. Zang, P. Deng, Q. Wang, L. L. Xing, Y. Zhang, Z. L. Wang, Nano Energy 2015, 13, 414; b) C. Y. Tu, J. M. Wu, Nano Energy 2021, 87, 106131; c) S. C. Chang, H. Y. Chen, P. H. Chen, J. T. Lee, J. M. Wu, Appl Catal B-Environ 2023, 324, 122204.
- 10a) J. M. Wu, W. E. Chang, Y. T. Chang, C.-K. Chang, Adv. Mater. 2016, 28, 3718; b) J. T. Lee, M. C. Lin, J. M. Wu, Nano Energy 2022, 98, 107280; c) M. Y. Wang, Y. P. Zuo, J. L. Wang, Y. Wang, X. P. Shen, B. C. Qiu, L. J. Cai, F. C. Zhou, S. P. Lau, Y. Chai, Adv. Energy Mater. 2019, 9, 1901801; d) C. Hu, F. Chen, Y. G. Wang, N. Tian, T. Y. Ma, Y. H. Zhang, H. W. Huang, Adv. Mater. 2021, 33, 2101751.
- 11Y. T. Lin, S. N. Lai, J. M. Wu, Adv. Mater. 2020, 32, 2002875.
- 12P. V. Yudin, A. K. Tagantsev, Nanotechnology 2013, 24, 432001.
- 13S. L. Guo, S. N. Lai, J. M. Wu, ACS Nano 2021, 15, 16106.
- 14S. Sharma, R. Kumar, M. Talha, R. Vaish, Advanced Theory and Simulations 2021, 4, 2000158.
- 15a) T. D. Nguyen, S. Mao, Y.-W. Yeh, P. K. Purohit, M. C. McAlpine, Adv. Mater. 2013, 25, 946; b) U. K. Bhaskar, N. Banerjee, A. Abdollahi, Z. Wang, D. G. Schlom, G. Rijnders, G. Catalan, Nature Nanotechnology 2016, 11; c) P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, J. F. Scott, Phys. Rev. Lett. 2007, 99, 167601.
- 16J. Narvaez, F. Vasquez-Sancho, G. Catalan, Nature 2016, 538, 219.
- 17R. Biele, E. Flores, J. R. Ares, C. Sanchez, I. J. Ferrer, G. Rubio-Bollinger, A. Castellanos-Gomez, R. D'Agosta, Nano Res. 2018, 11, 225.
- 18K. P. Dhakal, S. Roy, H. Jang, X. Chen, W. S. Yun, H. Kim, J. Lee, J. Kim, J.-H. Ahn, Chem. Mater. 2017, 29, 5124.
- 19a) Y. F. Sun, S. Dai, Sci Adv 2021, 7, eabg1600; b) P. Y. Wu, K. T. Le, H. Y. Lin, Y. C. Chen, P. H. Wu, J. M. Wu, Acs Nano 2023, 17, 17417; c) Y. J. Chung, C. S. Yang, J. T. Lee, G. H. Wu, J. M. Wu, Adv. Energy Mater. 2020, 10, 2002082.
- 20a) J. M. Wu, H. C. Shih, Y. K. Tseng, C. L. Hsu, C. Y. Tsay, J. Electrochem. Soc. 2007, 154, H157; b) J. M. Wu, J. Mater. Chem. 2011, 21, 14048; c) Z. W. Wang, Q. Wan, Y. Z. Shi, H. Wang, Y. Y. Kang, S. Y. Zhu, S. Lin, L. Wu, Applied Catalysis B-Environmental 2021, 288, 120000.
- 21a) S. Yang, Y. Chen, C. Jiang, Info. Mat. 2021, 3, 397;
10.1002/inf2.12177 Google Scholarb) R. Guo, L. You, W. Lin, A. Abdelsamie, X. Shu, G. Zhou, S. Chen, L. Liu, X. Yan, J. Wang, J. Chen, Nat. Commun. 2020, 11, 2571.
- 22S. M. Park, B. Wang, L. Q. Chen, T. W. Noh, S. M. Yang, D. Lee, Appl. Phys. Rev. 2021, 8, 041327.
- 23a) A. N. Morozovska, E. A. Eliseev, G. S. Svechnikov, S. V. Kalinin, Physical Review B 2011, 84, 045402; b) A. N. Morozovska, E. A. Eliseev, N. Balke, S. V. Kalinin, J. Appl. Phys. 2010, 108, 053712; c) C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, M. Lončar, Opt. Express 2017, 25, 6963.
- 24A. Isogai, T. Saito, H. Fukuzumi, Nanoscale 2011, 3, 71.
- 25T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai, Biomacromolecules 2009, 10, 1992.
- 26J. M. Wu, H. C. Shih, W. T. Wu, Nanotechnology 2006, 17, 105.
- 27M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2010, 257, 887.
- 28a) Y. Wang, C. Sun, X. Yan, F. Xiu, L. Wang, S. C. Smith, K. L. Wang, G. Q. Lu, J. Zou, J. Am. Chem. Soc. 2011, 133, 695; b) S. Wendt, P. T. Sprunger, E. Lira, G. K. H. Madsen, Z. Li, J. Ø. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, Science 2008, 320, 1755; c) Z. Sun, T. Liao, Y. Dou, S. M. Hwang, M.-S. Park, L. Jiang, J. H. Kim, S. X. Dou, Nature Communications 2014, 5, 3813.
- 29F. Ahmadpoor, P. Sharma, Nanoscale 2015, 7, 16555.
- 30P. Zubko, G. Catalan, A. K. Tagantsev, Annu. Rev. Mater. Res. 2013, 43, 387.
- 31A. Abdollahi, N. Domingo, I. Arias, G. Catalan, Nat. Commun. 2019, 10, 1266.
- 32X. Liang, S. L. Hu, S. P. Shen, Smart Mater. Struct. 2015, 24.
- 33H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, J. Appl. Phys. 1994, 75, 2042.
- 34L. Wang, S. Liu, X. Feng, C. Zhang, L. Zhu, J. Zhai, Y. Qin, Z. L. Wang, Nat. Nanotechnol. 2020, 15, 661.
- 35J. Hong, D. Vanderbilt, Phys. Rev. B 2013, 88, 174107.
- 36M. C. Lin, S. N. Lai, K. T. Le, J. M. Wu, Nano Energy 2022, 91, 106640.
- 37Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, L. C. Kimerling, Appl. Phys. Lett. 2003, 82, 2044.
- 38C. Hu, J. Hu, Z. Zhu, Y. Lu, S. Chu, T. Ma, Y. Zhang, H. Huang, Angew. Chem., Int. Ed. 2022, 61, e202212397.
- 39S. R. Jhang, H. Y. Lin, Y. S. Liao, J. P. Chou, J. M. Wu, Nano Energy 2022, 102, 107619.
- 40G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 41G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 42J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.