Optimized Lithium Ion Coordination via Chlorine Substitution to Enhance Ionic Conductivity of Garnet-Based Solid Electrolytes
Shuhan Wang
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorTing Zeng
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorXiaojuan Wen
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorHaoyang Xu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorFengxia Fan
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorXinxiang Wang
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorGuilei Tian
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorSheng Liu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorPengfei Liu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorChuan Wang
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorChenrui Zeng
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorCorresponding Author
Chaozhu Shu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
E-mail: [email protected]
Search for more papers by this authorShuhan Wang
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorTing Zeng
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorXiaojuan Wen
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorHaoyang Xu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorFengxia Fan
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorXinxiang Wang
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorGuilei Tian
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorSheng Liu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorPengfei Liu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorChuan Wang
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorChenrui Zeng
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
Search for more papers by this authorCorresponding Author
Chaozhu Shu
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Garnet-type solid-state electrolytes attract abundant attentions due to the broad electrochemical window and remarkable thermal stability while their poor ionic conductivity obstructs their widespread application in all-solid-state batteries. Herein, the enhanced ionic conductivity of garnet-type solid electrolytes is achieved by partially substituting O2− sites with Cl− anions, which effectively reduce Li+ migration barriers while preserving the highly conductive cubic phase of garnet-type solid-state electrolytes. This substitution not only weakens the anchoring effect of anions on Li+ to widen the size of Li+ diffusion channel but also optimizes the occupancy of Li+ at different sites, resulting in a substantial reduction of the Li+ migration barrier and a notable improvement in ionic conductivity. Leveraging these advantageous properties, the developed Li6.35La3Zr1.4Ta0.6O11.85-Cl0.15 (LLZTO-0.15Cl) electrolyte demonstrates high Li+ conductivity of 4.21×10−6 S cm−1. When integrated with LiFePO4 (LFP) cathode and metallic lithium anode, the LLZTO-0.15Cl electrolyte enables the solid-state battery to operate for more than 100 cycles with a high capacity retention of 76.61% and superior Coulombic efficiency of 99.48%. This work shows a new strategy for modulating anionic framework to enhance the conductivity of garnet-type solid-state electrolytes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202309874-sup-0001-SuppMat.pdf818.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Chem. Rev. 2020, 120, 6878.
- 2A. M. Nolan, Y. Zhu, X. He, Q. Bai, Y. Mo, Joule 2018, 2, 2016.
- 3X.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu, Q. Zhang, Chem 2019, 5, 74.
- 4C. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Chem. Rev. 2020, 120, 4257.
- 5A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.
- 6R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. 2007, 46, 7778.
- 7J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.
- 8A. J. Samson, K. Hofstetter, S. Bag, V. Thangadurai, Energy Environ. Sci. 2019, 12, 2957.
- 9K. Wang, Q. Ren, Z. Gu, C. Duan, J. Wang, F. Zhu, Y. Fu, J. Hao, J. Zhu, L. He, C.-W. Wang, Y. Lu, J. Ma, C. Ma, Nat. Commun. 2021, 12, 4410.
- 10F. Sun, Y. Yang, S. Zhao, Y. Wang, M. Tang, Q. Huang, Y. Ren, H. Su, B. Wang, N. Zhao, X. Guo, H. Yu, ACS Energy Lett. 2022, 7, 2835.
- 11J. Shi, G. Sun, L. Li, Y. Xia, F. Du, X. Liu, H. Hou, X. Hou, B. Zheng, X. Wu, K. Huang, S. Feng, ACS Energy Lett. 2023, 8, 48.
- 12R. P. Rao, W. Gu, N. Sharma, V. K. Peterson, M. Avdeev, S. Adams, Chem. Mater. 2015, 27, 2903.
- 13Y. Sun, O. Gorobstov, L. Mu, D. Weinstock, R. Bouck, W. Cha, N. Bouklas, F. Lin, A. Singer, Nano Lett. 2021, 21, 4570.
- 14N. Ahmad, S. Sun, P. Yu, W. Yang, Adv. Funct. Mater. 2022, 32, 2201528.
- 15Y.-C. Yin, J.-T. Yang, J.-D. Luo, G.-X. Lu, Z. Huang, J.-P. Wang, P. Li, F. Li, Y.-C. Wu, T. Tian, Y.-F. Meng, H.-S. Mo, Y.-H. Song, J.-N. Yang, L.-Z. Feng, T. Ma, W. Wen, K. Gong, L.-J. Wang, H.-X. Ju, Y. Xiao, Z. Li, X. Tao, H.-B. Yao, Nature 2023, 616, 77.
- 16Y.-N. Yang, Y.-X. Li, Y.-Q. Li, T. Zhang, Nat. Commun. 2020, 11, 5519.
- 17G. Yang, X. Bai, Y. Zhang, Z. Guo, C. Zhao, L. Fan, N. Zhang, Adv. Funct. Mater. 2023, 33, 2211387.
- 18M. Müller, J. Schmieg, S. Dierickx, J. Joos, A. Weber, D. Gerthsen, E. Ivers-Tiffée, ACS Appl. Mater. Interfaces 2022, 14, 14739.
- 19Y. Uwamino, T. Ishizuka, H. Yamatera, J. Electron Spectrosc. Relat. Phenom. 1984, 34, 67.
- 20L. M. Riegger, R. Schlem, J. Sann, W. G. Zeier, J. Janek, Angew. Chem., Int. Ed. 2021, 60, 6718.
- 21D. Briggs, Surf. Interface Anal. 1981, 3.
- 22Y. Zeng, B. Ouyang, J. Liu, Y.-W. Byeon, Z. Cai, L. J. Miara, Y. Wang, G. Ceder, Science 2022, 378, 1320.
- 23F. Tietz, T. Wegener, M. T. Gerhards, M. Giarola, G. Mariotto, Solid State Ion 2013, 230, 77.
- 24J. Awaka, N. Kijima, H. Hayakawa, J. Akimoto, J. Solid State Chem. 2009, 182, 2046.
- 25B. A. Kolesov, C. A. Geiger, Phys. Chem. Miner. 1998, 25, 142.
- 26Z. Zhang, L. Zhang, C. Yu, X. Yan, B. Xu, L. Wang, Electrochim. Acta 2018, 289, 254.
- 27X. Xiang, F. Chen, W. Yang, J. Yang, X. Ma, D. Chen, K. Su, Q. Shen, L. Zhang, J. Am. Ceram. Soc. 2020, 103, 2483.
- 28J. An, H. Zhang, L. Qi, G. Li, Y. Li, Angew. Chem., Int. Ed. 2022, 61, e202113313.
- 29D. Wang, G. Zhong, W. K. Pang, Z. Guo, Y. Li, M. J. McDonald, R. Fu, J.-X. Mi, Y. Yang, Chem. Mater. 2015, 27, 6650.
- 30J. Zheng, M. Tang, Y. Hu, Angew. Chem., Int. Ed. 2016, 55, 12538.
- 31R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617.
- 32V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461.
- 33Y. Chen, T. Wang, H. Chen, W. H. Kan, W. Yin, Z. Song, C. Wang, J. Ma, W. Luo, Y. Huang, Matter 2023, 6, 1530.
- 34Y. Li, S. Song, H. Kim, K. Nomoto, H. Kim, X. Sun, S. Hori, K. Suzuki, N. Matsui, M. Hirayama, T. Mizoguchi, T. Saito, T. Kamiyama, R. Kanno, Science 2023, 381, 50.
- 35P. Lu, Y. Xia, G. Sun, D. Wu, S. Wu, W. Yan, X. Zhu, J. Lu, Q. Niu, S. Shi, Z. Sha, L. Chen, H. Li, F. Wu, Nat. Commun. 2023, 14, 4077.
- 36K. L. Ngai, Solid State Ion 1998, 105, 231.
- 37Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, Nat. Energy 2020, 5, 299.
- 38X. Miao, H. Wang, R. Sun, C. Wang, Z. Zhang, Z. Li, L. Yin, Energy Environ. Sci. 2020, 13, 3780.
- 39Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang, X. Guo, Nat. Commun. 2023, 14, 482.
- 40D. Massiot, F. Fayon, M. Capron, I. King, S. L. Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 2002, 40, 70.
- 41G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 42G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 43J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 44G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 45P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 46G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.