Spontaneous Built-In Electric Field in C3N4-CoSe2 Modified Multifunctional Separator with Accelerating Sulfur Evolution Kinetics and Li Deposition for Lithium-Sulfur Batteries
Ziwei Liang
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorChao Peng
Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055 P. R. China
Search for more papers by this authorJiadong Shen
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJujun Yuan
Key Laboratory of New Energy Materials and Low Carbon Technologies, College of Physics and Electronics, Gannan Normal University, Ganzhou, 341000 P. R. China
Search for more papers by this authorYan Yang
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorDongfeng Xue
Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055 P. R. China
Search for more papers by this authorMin Zhu
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorCorresponding Author
Jun Liu
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
E-mail: [email protected]
Search for more papers by this authorZiwei Liang
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorChao Peng
Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055 P. R. China
Search for more papers by this authorJiadong Shen
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJujun Yuan
Key Laboratory of New Energy Materials and Low Carbon Technologies, College of Physics and Electronics, Gannan Normal University, Ganzhou, 341000 P. R. China
Search for more papers by this authorYan Yang
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorDongfeng Xue
Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055 P. R. China
Search for more papers by this authorMin Zhu
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorCorresponding Author
Jun Liu
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The discovery of the heterostructures that is combining two materials with different properties has brought new opportunities for the development of lithium sulfur batteries (LSBs). Here, C3N4-CoSe2 composite is elaborately designed and used as a functional coating on the LSBs separator. The abundant chemisorption sites of C3N4-CoSe2 form chemical bonding with polysulfides, provides suitable adsorption energy for lithium polysulfides (LiPSs). More importantly, the spontaneously formed internal electric field accelerates the charge flow in the C3N4-CoSe2 interface, thus facilitating the transport of LiPSs and electrons and promoting the bidirectional conversion of sulfur. Meanwhile, the lithiophilic C3N4-CoSe2 sample with catalytic activity can effectively regulate the uniform distribution of lithium when Li+ penetrates the separator, avoiding the formation of lithium dendrites in the lithium (Li) metal anode. Therefore, LSBs based on C3N4-CoSe2 functionalized membranes exhibit a stable long cycle life at 1C (with capacity decay of 0.0819% per cycle) and a large areal capacity of 10.30 mAh cm−2 at 0.1C (sulfur load: 8.26 mg cm−2, lean electrolyte 5.4 µL mgs−1). Even under high-temperature conditions of 60 °C, a capacity retention rate of 81.8% after 100 cycles at 1 C current density is maintained.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202309717-sup-0001-SuppMat.pdf766 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Bi, Z. Du, J. Sun, Y. Liu, K. Wang, H. Du, W. Ai, W. Huang, Adv. Mater. 2023, 35, 2210734.
- 2S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu, H. Zhang, B. Su, M. Lyu, X He, Adv. Energy Mater. 2023, 13, 2204343.
- 3W. Dou, M. Zheng, W. Zhang, T. Liu, F. Wang, G. Wan, Y. Liu, X. Tao, Adv. Funct. Mater. 2023, 33, 2305161.
- 4W.-M. Zhao, J.-D. Shen, X.-J. Xu, W.-X. He, L. Liu, Z.-H. Chen, J. Liu, Rare Met. 2022, 41, 1080.
- 5Z. Liang, J. Shen, X. Xu, F. Li, J. Liu, B. Yuan, Y. Yu, M. Zhu, Adv. Mater. 2022, 34, 2200102.
- 6Z. Wang, J. Shen, X. Xu, J. Yuan, S. Zuo, Z. Liu, D. Zhang, J. Liu, Small 2022, 18, 2106640.
- 7A. Kizilaslan, A. Waleed Majeed Al-Ogaili, H. Akbulut, Chem. Eng. J. 2022, 450, 138050.
- 8Y. Li, H. Wu, D. Wu, H. Wei, Y. Guo, H. Chen, Z. Li, L. Wang, C. Xiong, Q. Meng, H. Liu, C. K. Chan, Adv. Sci. 2022, 9, 2200840.
- 9J. Wang, S. Yang, Z. Xu, G. Ai, T. Zhang, W. Mao, Adv. Mater. Interfaces 2022, 9, 2101699.
- 10Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu, R. Hu, L. Yang, Y. Feng, J. Liu, Z. Shi, L. Ouyang, Y. Yu, M. Zhu, Adv. Mater. 2019, 31, 1902228.
- 11X. Gao, C. Zheng, Y. Shao, V. R. Shah, S. Jin, J. Suntivich, Y. L. Joo, ACS Appl. Mater. Interfaces 2023, 15, 19011.
- 12T. Xiao, F. Yi, M. Yang, W. Liu, M. Li, M. Ren, X. Zhang, Z. Zhou, J. Mater. Chem. A 2021, 31, 16692.
10.1039/D1TA03608D Google Scholar
- 13W. Zhou, X. Wang, J. Shan, L. Yue, D. Lu, L. Chen, J. Zhang, Y. Li, J. Energy Chem. 2023, 80, 128.
- 14H.-M. Wang, Z.-Y. Wang, C. Zhou, G.-R. Li, S. Liu, X.-P. Gao, Sci. China Mater 2023, 66, 913.
- 15H. Qiu, T. Wang, W. Lv, Q. Liu, J. Huang, J. Colloid Interface Sci. 2022, 630, 106.
- 16M. Zheng, J. Mu, Y. Li, Y. Pan, Z. Dong, B. Chen, S. Guo, W. Yuan, H. Fang, H. Hu, M. Wu, J. Energy Chem. 2022, 78, 105.
- 17Y. Wang, R. Luo, Y. Zhang, Y. Guo, Y. Lu, X. Liu, J.-K. Kim, Y. Luo, ACS Appl. Energy Mater. 2019, 2, 3314.
- 18W. Xu, R. Bi, J. Wang, R. Yu, D. Wang, Nano Res. 2023, 16, 12745.
- 19J. Li, Z. Jing, H. Bai, Z. Chen, A. I. Osman, M. Farghali, D. W. Rooney, P.-S. Yap, Environ. Chem. Lett. 2023, 21, 2583.
- 20W. Feng, W. Pang, Y. Xu, A. Guo, X. Gao, X. Qiu, W. Chen, ChemElectroChem 2020, 7, 31.
- 21X. Xia, L. Wang, N. Sui, V. L. Colvin, W. W. Yu, Nanoscale 2020, 12, 12249.
- 22J. He, A. Manthiram, Adv. Energy Mater. 2020, 10, 2002654.
- 23J. Feng, C. Shi, H. Dong, C. Zhang, W. Liu, Y. Liu, T. Wang, X. Zhao, S. Chen, J. Song, J. Energy Chem. 2023, 86, 135.
- 24Y. Li, X. Wang, M. Sun, J. Xiao, B. Zhang, L. Ai, Z. Zhao, J. Qiu, ACS Nano 2022, 16, 17008.
- 25H. Ma, Z. Wan, J. Li, R. Wu, Z. Zhang, B. Li, B. Zhao, Q. Qian, Y. Liu, Q. Xia, G. Guo, X. Duan, X. Duan, Adv. Mater. 2019, 31, 1900901.
- 26L. Wang, X. Meng, X. Wang, M. Zhen, Small 2023, 19, 2300089.
- 27W. Yang, Z. Shen, J. Hui, H. Zhang, Q. Zhu, Adv. Energy Mater. 2023, 13, 2204345.
10.1002/aenm.202204345 Google Scholar
- 28Q. Wang, M. Hou, D. Liu, X. Zhou, Z. Lei, J. Alloys Compd. 2020, 864, 158099.
10.1016/j.jallcom.2020.158099 Google Scholar
- 29J. Ao, Y. Xie, Y. Lai, M. Yang, J. Xu, F. Wu, S. Cheng, X. Wang, Sci. China Mater. 2023, 66, 3075.
- 30Z. Shen, Q. Zhou, H. Yu, J. Tian, M. Shi, C. Hu, H. Zhang, Chinese J. Chem. 2021, 39, 1138.
- 31X. Liu, Y. Zheng, M. Zhang, S. Qi, M. Tan, R. Zhao, M. Zhao, Adv. Mater. Interfaces 2023, 10, 2202205.
- 32Z.-Q. Xu, R. Zou, W.-W. Liu, G.-L. Liu, Y.-S. Cui, Y.-X. Lei, Y.-W. Zheng, W.-J. Niu, Y.-Z. Wu, B.-N. Gu, M.-J. Liu, F. Ran, Y.-L. Chueh, Chem. Eng. J. 2023, 471, 144581.
- 33J. Y. Hong, Y. Jung, D.-W. Park, S. Chung, S. Kim, Electrochim. Acta 2017, 259, 1021.
- 34Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Adv. Mater. 2020, 32, 2002168.
- 35D. A. Giannakoudakis, N. A. Travlou, J. Secor, T. J. Bandosz, Small 2016, 13, 1601758.
10.1002/smll.201601758 Google Scholar
- 36G. Marcì, E. I. García-López, F. R. Pomilla, L. Palmisano, A. Zaffora, M. Santamaria, I. Krivtsov, M. Ilkaeva, Z. Barbieriková, V. Brezová, Catal. Today 2019, 328, 21.
- 37X. Zhu, F. Kou, H. Xu, G. Yang, RSC Adv. 2016, 6, 105331.
- 38Z. Tong, L. Huang, H. Liu, W. Lei, H. Zhang, S. Zhang, Q. Jia, Adv. Funct. Mater. 2021, 31, 200455.
- 39X. Bai, C. Wang, C. Dong, C. Li, Y. Zhai, W. Si, L. Xu, Sci. China Mater. 2019, 62, 1265.
- 40H. Li, H. Chen, Y. Xue, Y. Zhang, M. Zhang, W. Yu, G. Bai, K. Zhuo, Y. Zheng, Adv. Energy Mater. 2020, 10, 2001683.
- 41H. Zou, Y. Zou, Y. Lv, Z. Ao, N. Chen, Y. Huang, ACS Appl. Energy Mater. 2022, 5, 10067.
- 42Y. Ding, Z. Shi, Y. Sun, J. Wu, X. Pan, J. Sun, ACS Nano 2023, 17, 6002.
- 43H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2018, 9, 1802768.
- 44L. He, D. Yang, H. Zhao, L. Wei, D. Wang, Y. Wang, G. Chen, Y. Wei, Chem. Eng. J. 2022, 440, 135820.
- 45Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu, R. Chen, Adv. Sci. 2021, 9, 2103456.
- 46M. Zhao, X. Chen, X.-Y. Li, B.-Q. Li, J.-Q. Huang, Angew. Chem., Int. Ed. 2021, 33, 2007298.
- 47D. Lu, X. Wang, Y. Hu, L. Yue, Z. Shao, W. Zhou, L. Chen, W. Wang, Y. Li, Adv. Funct. Mater. 2023, 33, 2212689.
- 48X. Zhong, D. Wang, J. Sheng, Z. Han, C. Sun, J. Tan, R. Gao, W. Lv, X. Xu, G. Wei, X. Zou, G. Zhou, Nano Lett. 2022, 22, 1207.
- 49S. Ye, L. Wang, F. Liu, P. Shi, H. Wang, X. Wu, Y. Yu, Adv. Energy Mater. 2020, 10, 2002647.
- 50M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang, X. Wu, D. Tian, K. Sun, Y. Qiu, X. Yin, Y. Zhang, N. Zhang, ACS Energy Lett. 2020, 5, 3041.
- 51Y. Fu, Z. Wu, Y. Yuan, P. Chen, L. Yu, L. Yuan, Q. Han, Y. Lan, W. Bai, E. Kan, C. Huang, X. Ouyang, X. Wang, J. Zhu, J. Lu, Nat. Commun. 2020, 11, 845.
- 52D. Moy, A. Manivannan, S. R. Narayanan, J. Electrochem. Soc. 2014, 162, A1.
- 53L. Qie, C. Zu, A. Manthiram, Adv. Energy Mater. 2016, 6, 1502459.
- 54M. Rana, S. A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle, R. Knibbe, Energy Stor. Mater. 2018, 18, 289.
- 55T. Wang, Q. Zhang, J. Zhong, M. Chen, H. Deng, J. Cao, L. Wang, L. Peng, J. Zhu, B. Lu, Adv. Energy Mater. 2021, 11, 2100448.
- 56D. Wang, Y. Wu, X. Zheng, S. Tang, Z. Gong, Y. Yang, J. Power Sources 2020, 479, 228792.
- 57H. Yang, J. Chen, J. Yang, Y. Nuli, J. Wang, Energy Storage Mater. 2020, 31, 187.
- 58F. Ma, Z. Chen, K. Srinivas, D. Liu, Z. Zhang, Y. Wu, M.-Q. Zhu, Q. Wu, Y. Chen, Chem. Eng. J. 2023, 459, 141526.
- 59Z. Guan, X. Chen, F. Chu, R. Deng, S. Wang, J. Liu, F. Wu, Adv. Energy Mater. 2023, 2302850.
10.1002/aenm.202302850 Google Scholar
- 60F. Chu, M. Wang, J. Liu, Z. Guan, H. Yu, B. Liu, F. Wu, Adv. Funct. Mater. 2022, 32, 2205393.