Bioinspired Light-Driven Proton Pump: Engineering Band Alignment of WS2 with PEDOT:PSS and PDINN
Min Zhou
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorPeikun Zhang
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorMing Zhang
State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXiaoyan Jin
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorYuhui Zhang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorBiying Liu
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDi Quan
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorMeijuan Jia
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorZhiguo Zhang
State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorZhuhua Zhang
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorCorresponding Author
Xiang-Yu Kong
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051 P. R. China
E-mail: [email protected]
Search for more papers by this authorLei Jiang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051 P. R. China
Search for more papers by this authorMin Zhou
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorPeikun Zhang
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorMing Zhang
State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXiaoyan Jin
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorYuhui Zhang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorBiying Liu
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDi Quan
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorMeijuan Jia
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorZhiguo Zhang
State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorZhuhua Zhang
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorCorresponding Author
Xiang-Yu Kong
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051 P. R. China
E-mail: [email protected]
Search for more papers by this authorLei Jiang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051 P. R. China
Search for more papers by this authorAbstract
Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2. Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202308277-sup-0001-SuppMat.pdf980.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. El-Sayed, Acc. Chem. Res. 1992, 25, 279.
- 2D. Oesterhelt, W. Stoeckenius, Nat. New Biol. 1971, 233, 149.
- 3a) N. K. Allam, C.-W. Yen, R. D. Near, M. A. El-Sayed, Energy Environ. Sci. 2011, 4, 2909; b) S. Balasubramanian, P. Wang, R. D. Schaller, T. Rajh, E. A. Rozhkova, Nano Lett. 2013, 13, 3365; c) P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, E. A. Rozhkova, ACS Nano 2014, 8, 7995; d) D.-M. Yan, J.-R. Chen, W.-J. Xiao, Angew. Chem., Int. Ed. 2019, 58, 378; e) Z. Chen, H. Zhang, P. Guo, J. Zhang, G. Tira, Y. J. Kim, Y. A. Wu, Y. Liu, J. Wen, T. Rajh, J. Niklas, O. G. Poluektov, P. D. Laible, E. A. Rozhkova, J. Am. Chem. Soc. 2019, 141, 11811.
- 4a) Y. Lei, J. K. Hurst, Langmuir 1999, 15, 3424; b) X. Xie, G. A. Crespo, G. Mistlberger, E. Bakker, Nat. Chem. 2014, 6, 202; c) W. White, C. D. Sanborn, R. S. Reiter, D. M. Fabian, S. Ardo, J. Am. Chem. Soc. 2017, 139, 11726.
- 5a) M. Natali, S. Giordani, Chem. Soc. Rev. 2012, 41, 4010; b) X. Xie, E. Bakker, Phys. Chem. Chem. Phys. 2014, 16, 19781.
- 6a) G. Steinberg-Yfrach, P. A. Liddell, S.-C. Hung, A. L. Moore, D. Gust, T. A. Moore, Nature 1997, 385, 239; b) D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001, 34, 40; c) K. Xiao, L. Chen, R. T. Chen, T. Heil, S. D. C. Lemus, F. T. Fan, L. P. Wen, L. Jiang, M. Antonietti, Nat. Commun. 2019, 10, 843; d) Q. Zhang, Z. Liu, X. Hou, X. Fan, J. Zhai, L. Jiang, Chem. Commun. 2012, 48, 5901.
- 7a) X. Zhang, Z. Lai, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 3301; b) P. Prabhu, V. Jose, J.-M. Lee, Matter 2020, 2, 526.
- 8a) H. Liu, Y. Du, Y. Deng, P. D. Ye, Chem. Soc. Rev. 2015, 44, 2732; b) V. Eswaraiah, Q. Zeng, Y. Long, Z. Liu, Small 2016, 12, 3480.
- 9a) C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225; b) T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, H. Teng, Adv. Funct. Mater. 2010, 20, 2255.
- 10J. Zhang, Y. Chen, X. Wang, Energy Environ. Sci. 2015, 8, 3092.
- 11a) H. Zhang, X. Li, J. Hou, L. Jiang, H. Wang, Chem. Soc. Rev. 2022, 51, 2224; b) J. Wang, H. Zhou, S. Li, L. Wang, Angew. Chem., Int. Ed. 2023, 62, e202218321.
- 12J. Yang, X. Hu, X. Kong, P. Jia, D. Ji, D. Quan, L. Wang, Q. Wen, D. Lu, J. Wu, L. Jiang, W. Guo, Nat. Commun. 2019, 10, 1171.
- 13P. Jia, L. Wang, Y. Zhang, Y. Yang, X. Jin, M. Zhou, D. Quan, M. Jia, L. Cao, R. Long, L. Jiang, W. Guo, Adv. Mater. 2021, 33, 2007529.
- 14a) R. Sorrentino, E. Kozma, S. Luzzati, R. Po, Energy Environ. Sci. 2021, 14, 180; b) H. Meng, C. Liao, M. Deng, X. Xu, L. Yu, Q. Peng, Angew. Chem., Int. Ed. 2021, 60, 22554.
- 15a) Y. L. Huang, Y. J. Zheng, Z. Song, D. Chi, A. T. S. Wee, S. Y. Quek, Chem. Soc. Rev. 2018, 47, 3241; b) S. Yang, D. Prendergast, J. B. Neaton, Nano Lett. 2012, 12, 383; c) P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, V. Bulovic, ACS Nano 2014, 8, 5863; d) E. P. Nguyen, B. J. Carey, J. Z. Ou, J. Van Embden, E. D. Gaspera, A. F. Chrimes, M. J. S. Spencer, S. Zhuiykov, K. Kalantar-Zadeh, T. Daeneke, Adv. Mater. 2015, 27, 6225; e) N. Shen, G. Tao, Adv. Mater. Interfaces 2017, 4, 1601083; f) M. R. Habib, W. Wang, A. Khan, Y. Khan, S. M. Obaidulla, X. Pi, M. Xu, Adv. Theory Simul. 2020, 3, 2000045.
- 16a) R. Xue, J. Zhang, Y. Li, Y. Li, Small 2018, 14, 1801793; b) B. Xu, J. Hou, Adv. Energy Mater. 2018, 8, 1800022.
- 17a) M. Liu, Y. Jiang, D. Liu, J. Wang, Z. Ren, T. P. Russell, Y. Liu, ACS Energy Lett. 2021, 6, 3228; b) Z.-G. Zhang, B. Qi, Z. Jin, D. Chi, Z. Qi, Y. Li, J. Wang, Energy Environ. Sci. 2014, 7, 1966; c) J. Yao, B. Qiu, Z.-G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, Y. Li, Nat. Commun. 2020, 11, 2726; d) C. Song, X. Liu, X. Li, Y.-C. Wang, L. Wan, X. Sun, W. Zhang, J. Fang, ACS Appl. Mater. Interfaces 2018, 10, 14986.
- 18a) J. W. Jo, J. W. Jung, S. Bae, M. J. Ko, H. Kim, W. H. Jo, A. K.-Y. Jen, H. J. Son, Adv. Mater. Interfaces 2016, 3, 1500703; b) E. J. Lee, M. H. Choi, Y. W. Han, D. K. Moon, ACS Appl. Mater. Interfaces 2017, 9, 44060; c) C. Feng, X. Wang, Z. He, Y. Cao, Sol. RRL 2021, 5, 2000753.
- 19a) Y. Wang, N. Li, M. Cui, Y. Li, X. Tian, X. Xu, Q. Rong, D. Yuan, G. Zhou, L. Nian, Org. Electron. 2021, 99, 106305; b) W. Xing, Y. Chen, X. Wu, X. Xu, P. Ye, T. Zhu, Q. Guo, L. Yang, W. Li, H. Huang, Adv. Funct. Mater. 2017, 27, 1701622; c) Q. Yang, S. Yu, P. Fu, W. Yu, Y. Liu, X. Liu, Z. Feng, X. Guo, C. Li, Adv. Funct. Mater. 2020, 30, 1910205; d) Y. Sheng, H. Miao, J. Jing, W. Yao, Y. Zhu, Appl. Catal. B Environ. 2020, 272, 118897; e) S. Li, C. Zhao, S. Zhou, Y. Zhang, P. Zhu, J. Yu, Chem. Eng. J. 2020, 385, 123397; f) H. Miao, J. Yang, Y. Sheng, W. Li, Y. Zhu, Sol. RRL 2021, 5, 2000453.
- 20H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, Angew. Chem., Int. Ed. 2010, 49, 4059.
- 21a) M. Lapkowski, A. Pron, Synth. Met. 2000, 110, 79; b) J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, Polymer 2004, 45, 8443.
- 22G. H. Kim, D. H. Hwang, S. I. Woo, Phys. Chem. Chem. Phys. 2012, 14, 3530.
- 23a) B. Baruah, A. Kumar, Electroanalysis 2018, 30, 2131; b) H. Zhou, W. Yao, G. Li, J. Wang, Y. Lu, Carbon 2013, 59, 495; c) J. Yang, H. Miao, W. Li, H. Li, Y. Zhu, J. Mater. Chem. A 2019, 7, 6482.
- 24X. Zhang, Q. Wen, L. Wang, L. Ding, J. Yang, D. Ji, Y. Zhang, L. Jiang, W. Guo, ACS Nano 2019, 13, 4238.
- 25a) Y. Tian, B. Su, L. Jiang, Adv. Mater. 2014, 26, 6872; b) E. A. Vogler, Adv. Colloid Interface Sci. 1998, 74, 69.
- 26J. Heising, M. G. Kanatzidis, J. Am. Chem. Soc. 1999, 121, 638.
- 27X. Meng, H.-N. Wang, S.-Y. Song, H.-J. Zhang, Chem. Soc. Rev. 2017, 46, 464.
- 28T. Wang, C. Liu, X. Wang, X. Li, F. Jiang, C. Li, J. Hou, J. Xu, J. Polym. Sci. Pt. B Polym. Phys. 2017, 55, 997.
- 29a) S. Y. Kim, S. Kim, M. J. Park, Nat. Commun. 2010, 1, 88; b) S. Mayavan, H.-S. Jang, M.-J. Lee, S. H. Choi, S.-M. Choi, J. Mater. Chem. A 2013, 1, 3489.
- 30D. M. Kroupa, M. Vörös, N. P. Brawand, B. W. Mcnichols, E. M. Miller, J. Gu, A. J. Nozik, A. Sellinger, G. Galli, M. C. Beard, Nat. Commun. 2017, 8, 15257.
- 31L. Wang, Q. Wen, P. Jia, M. Jia, D. Lu, X. Sun, L. Jiang, W. Guo, Adv. Mater. 2019, 31, 1903029.
- 32K. Xiao, L. Chen, R. Chen, T. Heil, S. D. C. Lemus, F. Fan, L. Wen, L. Jiang, M. Antonietti, Nat. Commun. 2019, 10, 74.
- 33Y. Su, D. Liu, G. Yang, L. Wang, J. M. Razal, W. Lei, ACS Appl. Mater. Interfaces 2021, 13, 34679.
- 34X. Jin, P. Zhang, Y. Zhang, M. Zhou, B. Liu, D. Quan, M. Jia, Z. Zhang, W. Guo, X.-Y. Kong, L. Jiang, Biosens. Bioelectron. 2022, 218, 114741.
- 35a) G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558; b) G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15; c) G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251.
- 36J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- 37S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 38D. Kim, Y. Fu, S. Kim, W. Lee, K.-H. Lee, H. K. Chung, H.-J. Lee, H. Yang, H. Chae, ACS Nano 2017, 11, 1982.