Precursor Induced Assembly of Si Nanoparticles Encapsulated in Graphene/Carbon Matrices and the Influence of Al2O3 Coating on their Properties as Anode for Lithium-Ion Batteries
Haowei Li
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorZongyu Wang
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorLiyan Dang
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorKailun Yu
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorRui Yang
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorAiping Fu
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorXuehua Liu
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorYu-Guo Guo
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Hongliang Li
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
E-mail: [email protected]
Search for more papers by this authorHaowei Li
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorZongyu Wang
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorLiyan Dang
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorKailun Yu
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorRui Yang
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorAiping Fu
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorXuehua Liu
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorYu-Guo Guo
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Hongliang Li
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The theoretical capacity of pristine silicon as anodes for lithium-ion batteries (LIBs) can reach up to 4200 mAh g−1, however, the low electrical conductivity and the huge volume expansion limit their practical application. To address this challenge, a precursor strategy has been explored to induce the curling of graphene oxide (GO) flakes and the enclosing of Si nanoparticles by selecting protonated chitosan as both assembly inducer and carbon precursor. The Si nanoparticles are dispersed first in a slurry of GO by ball milling, then the resulting dispersion is dried by a spray drying process to achieve instantaneous solution evaporation and compact encapsulation of silicon particles with GO. An Al2O3 layer is constructed on the surface of Si@rGO@C-SD composites by the atomic layer deposition method to modify the solid electrolyte interface. This strategy enhances obviously the electrochemical performance of the Si as anode for LIBs, including excellent long-cycle stability of 930 mAh g−1 after 1000 cycles at 1000 mA g−1, satisfied initial Coulomb efficiency of 76.7%, and high rate ability of 806 mAh g−1 at 5000 mA g−1. This work shows a potential solution to the shortcomings of Si-based anodes and provides meaningful insights for constructing high-energy anodes for LIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202307722-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.
- 2L. Yang, F. Gao, L. Xu, B. Fu, Y. Zheng, P. Guo, ACS Appl. Energ. Mater. 2022, 5, 11624.
- 3M. Ge, C. Cao, G. M. Biesold, C. D. Sewell, S.-M. Hao, J. Huang, W. Zhang, Y. Lai, Z. Lin, Adv. Mater. 2021, 33, 2004577.
- 4X. Lao, M. Yang, J. Chen, L. Y. Zhang, P. Guo, Electrochim. Acta 2021, 374, 137912.
- 5S. Liu, X. Zhang, P. Yan, R. Cheng, Y. Tang, M. Cui, B. Wang, L. Zhang, X. Wang, Y. Jiang, L. Wang, H. Yu, ACS Nano 2019, 13, 8854.
- 6Y. Mu, M. Han, B. Wu, Y. Wang, Z. Li, J. Li, Z. Li, S. Wang, J. Wan, L. Zeng, Adv. Sci. 2022, 9, 2104685.
- 7R. Xu, R. Wei, X. Hu, Y. Li, L. Wang, K. Zhang, Y. Wang, H. Zhang, F. Liang, Y. Yao, Carbon 2021, 171, 265.
- 8H. Chen, Y. Yang, D. T. Boyle, Y. K. Jeong, R. Xu, L. S. De Vasconcelos, Z. Huang, H. Wang, H. Wang, W. Huang, H. Li, J. Wang, H. Gu, R. Matsumoto, K. Motohashi, Y. Nakayama, K. Zhao, Y. Cui, Nat. Energy 2021, 6, 790.
- 9G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. Duchene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem. 2012, 4, 310.
- 10H. Kim, M. Seo, M.-H. Park, J. Cho, Angewandte Chemie-International Edition 2010, 49, 2146.
- 11G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, ACS Nano 2021, 15, 15567.
- 12X. Zhu, S. H. Choi, R. Tao, X. Jia, Y. Lu, J. Alloy. Compd. 2019, 791, 1105.
- 13J. Shin, T.-H. Kim, Y. Lee, E. Cho, Energy Storage Mater 2020, 25, 764.
- 14S. Pan, J. Han, Y. Wang, Z. Li, F. Chen, Y. Guo, Z. Han, K. Xiao, Z. Yu, M. Yu, S. Wu, D.-W. Wang, Q.-H. Yang, Adv. Mater. 2022, 34, 2203617.
- 15L. Gu, J. Han, M. Chen, W. Zhou, X. Wang, M. Xu, H. Lin, H. Liu, H. Chen, J. Chen, Q. Zhang, X. Han, Energy Storage Mater 2022, 52, 547.
- 16W. Li, Q. Ma, P. Shen, Y. Zhou, L. Soule, Y. Li, Y. Wu, H. Zhang, M. Liu, Nano Energy 2021, 80, 105506.
- 17L. Sun, Y. Liu, J. Wu, R. Shao, R. Jiang, Z. Tie, Z. Jin, Small 2022, 18, 2102894.
- 18G. Li, J.-Y. Li, F.-S. Yue, Q. Xu, T.-T. Zuo, Y.-X. Yin, Y.-G. Guo, Nano Energy 2019, 60, 485.
- 19W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, Q. Zhang, P. K. Chu, K. Huo, Nat. Commun. 2019, 10, 1447.
- 20H. Song, S. Wang, X. Song, H. Yang, G. Du, L. Yu, J. Xu, P. He, H. Zhou, K. Chen, J. Mater. Chem. A 2018, 6, 7877.
- 21Y. He, X. Yu, Y. Wang, H. Li, X. Huang, Adv. Mater. 2011, 23, 4938.
- 22Y.-F. Tian, G. Li, D.-X. Xu, Z.-Y. Lu, M.-Y. Yan, J. Wan, J.-Y. Li, Q. Xu, S. Xin, R. Wen, Y.-G. Guo, Adv. Mater. 2022, 34, 2200672.
- 23F. Wang, G. Chen, N. Zhang, X. Liu, R. Ma, Carbon Energy 2019, 1, 219.
- 24Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang, P. Zhou, Y. Li, W. Yang, Z. Xia, S. Guo, ACS Nano 2019, 13, 2167.
- 25R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng, L. Zheng, L. Zheng, Z. Chen, G. Liu, B. Chen, Y. Mi, J. Yang, Adv. Energy Mater. 2018, 8, 1801514.
- 26J. Tang, F. Wu, X. Dai, J. Zhou, H. Pang, X. Duan, B. Xiao, D. Li, J. Long, Chem. Eng. J. 2023, 452, 139139.
- 27J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H. K. Liu, S. X. Dou, D. Zhao, Adv. Mater. 2017, 29, 1700523.
- 28X. Hui, R. Zhao, P. Zhang, C. Li, C. Wang, L. Yin, Adv. Energy Mater. 2019, 9, 1901065.
- 29T. Liu, S. Sun, W. Song, X. Sun, Q. Niu, H. Liu, T. Ohsaka, J. Wu, J. Mater. Chem. A 2018, 6, 23486.
- 30C. Qi, S. Li, Z. Yang, Z. Xiao, L. Zhao, F. Yang, G. Ning, X. Ma, C. Wang, J. Xu, J. Gao, Carbon 2022, 186, 530.
- 31S. Choi, T.-W. Kwon, A. Coskun, J. W. Choi, Science 2017, 357, 279.
- 32S.-H. Choi, G. Nam, S. Chae, D. Kim, N. Kim, W. S. Kim, J. Ma, J. Sung, S. M. Han, M. Ko, H.-W. Lee, J. Cho, Adv. Energy Mater. 2019, 9, 1803121.
- 33Z. Wang, H. Li, L. Dang, Z. Pu, Z. Xu, A. Fu, H. Li, J. Alloy. Compd. 2023, 936, 168205.
- 34H. Shang, Z. Zuo, L. Yu, F. Wang, F. He, Y. Li, Adv. Mater. 2018, 30, 1801459.
- 35S. Zhu, J. Zhou, Y. Guan, W. Cai, Y. Zhao, Y. Zhu, L. Zhu, Y. Zhu, Y. Qian, Small 2018, 14, 1802457.
- 36Q. Xu, J.-K. Sun, Z.-L. Yu, Y.-X. Yin, S. Xin, S.-H. Yu, Y.-G. Guo, Adv. Mater. 2018, 30, 1707430.
- 37K. Adpakpang, J.-E. Park, S. M. Oh, S.-J. Kim, S.-J. Hwang, Electrochim. Acta 2014, 136, 483.
- 38S. Xu, J. Zhou, J. Wang, S. Pathiranage, N. Oncel, P. Robert Ilango, X. Zhang, M. Mann, X. Hou, Adv. Funct. Mater. 2021, 31, 2101645.
- 39J. Chang, X. Huang, G. Zhou, S. Cui, P. B. Hallac, J. Jiang, P. T. Hurley, J. Chen, Adv. Mater. 2014, 26, 758.
- 40J. Wu, J. Liu, Z. Wang, X. Gong, Y. Wang, Chem. Eng. J. 2019, 370, 565.
- 41D. A. Agyeman, K. Song, G.-H. Lee, M. Park, Y.-M. Kang, Adv. Energy Mater. 2016, 6, 1600904.
- 42T. Yoon, T. Bok, C. Kim, Y. Na, S. Park, K. S. Kim, ACS Nano 2017, 11, 4808.
- 43W. J. Lee, T. H. Hwang, J. O. Hwang, H. W. Kim, J. Lim, H. Y. Jeong, J. Shim, T. H. Han, J. Y. Kim, J. W. Choi, S. O. Kim, Energy Environ. Sci. 2014, 7, 621.
- 44H. Zhu, M. H. A. Shiraz, L. Liu, Y. Zhang, J. Liu, Appl. Surf. Sci. 2022, 578, 151982.
- 45T. Mu, Y. Sun, C. Wang, Y. Zhao, K. Doyle-Davis, J. Liang, X. Sui, R. Li, C. Du, P. Zuo, G. Yin, X. Sun, Nano Energy 2022, 103, 107829.
- 46T. Mu, Y. Zhao, C. Zhao, N. G. Holmes, S. Lou, J. Li, W. Li, M. He, Y. Sun, C. Du, R. Li, J. Wang, G. Yin, X. Sun, Adv. Funct. Mater. 2021, 31, 2010526.
- 47Z. Wang, Z. Xu, Y. Yuan, X. Teng, Z. Pu, Y. Wang, A. Fu, Y.-G. Guo, H. Li, Appl. Surf. Sci. 2022, 598, 153790.
- 48V. Agarwal, P. B. Zetterlund, Chem. Eng. J. 2021, 405, 127018.
- 49Z. Wang, L. Jing, X. Zheng, Z. Xu, Y. Yuan, X. Liu, A. Fu, Y.-G. Guo, H. Li, J. Colloid Interface Sci. 2022, 629, 511.
- 50J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 2021, 11, 2100046.
- 51P. Shi, Z.-Y. Liu, X.-Q. Zhang, X. Chen, N. Yao, J. Xie, C.-B. Jin, Y.-X. Zhan, G. Ye, J.-Q. Huang, S. Ifan E L, T. Maria-Magdalena, Q. Zhang, J. Energy Chem. 2022, 64, 172.
- 52S. Huang, L.-Z. Cheong, S. Wang, D. Wang, C. Shen, Appl. Surf. Sci. 2018, 452, 67.