Platform for the Immobilizing of Ultrasmall Pd Clusters for Carbonylation: In Situ Self-Templating Fabrication of ZIF-8 on ZnO
Wei Yang
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorFangchao Wang
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorHe Wang
The third Military Representative Office in Taiyuan, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorDing Ding
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorCorresponding Author
Shaohua Jiang
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guoying Zhang
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWei Yang
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorFangchao Wang
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorHe Wang
The third Military Representative Office in Taiyuan, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorDing Ding
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
Search for more papers by this authorCorresponding Author
Shaohua Jiang
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guoying Zhang
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Incorporating metal clusters into the confined cavities of metal−organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core–shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method. The characteristics of the catalysts show that the palladium (Pd) clusters are highly dispersed with an average particle size of ≈1.2 nm, making them excellent candidates as a catalyst for carbonylation under mild conditions. The optimal catalyst (1.25-ZnO@Pd/ZIF-8) exhibits excellent activity in synthesizing α, β-alkynyl ketones under 1 atm of carbon monooxide (CO), and the conversion rate of 1, 3-diphenylprop-2-yn-1-one is 3.09 and 3.87 times more than those of Pd/ZIF-8 and Pd2+, respectively, for the first 2 h. Moreover, the 1.25-ZnO@Pd/ZIF-8 is recyclable, showing negligible metal leaching, and, under the conditions used in this investigation, can be reused at least five times without considerable loss in its catalytic efficiency. This protocol can also be applied with other nucleophile reagents to synthesize esters, amides, and acid products.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202306794-sup-0001-SuppMat.pdf8.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Ge, W. Cao, T. Kang, B. Hu, H. Zhang, Z. Su, X. Liu, X. Feng, Angew. Chem., Int. Ed. 2019, 58, 4017; b) Z. Hassan, E. Spuling, D. M. Knoll, J. Lahann, S. Bräse, Chem. Soc. Rev. 2018, 47, 6947; c) C. Sheng, Z. Ling, T. Ahmad, F. Xie, W. Zhang, Chem.-Eur. J. 2022, 28, 202200128; d) D. Wang, S.-C. Wang, W.-J. Hao, S.-J. Tu, B. Jiang, Chin. J. Chem. 2021, 39, 106; e) C. Zhang, H. Zhao, Z. Li, Z. Liang, S. Qi, M. Cai, S. Zhang, X. Jia, G. Zhang, M.-L. Hu, Chem. Commun. 2020, 56, 9521; f) Z. Lv, Y. Li, E. V. Van Der Eycken, L. Cai, L. Song, Org. Chem. Front. 2023, 10, 4912; g) T. Ma, Y. Zheng, S. Huang, J. Org. Chem. 2023, 88, 4839.
- 2a) Y. He, Y. Wang, S.-J. Li, Y. Lan, X. Wang, Angew. Chem., Int. Ed. 2022, 61, 202115497; b) Y. Iyori, R. Ueno, A. Morishige, N. Chatani, Chem. Sci. 2021, 12, 1772; c) R. Takise, K. Muto, J. Yamaguchi, Chem. Soc. Rev. 2017, 46, 5864; d) L. Wang, M. Yu, C. Wu, N. Deng, C. Wang, X. Yao, Adv. Synth. Catal. 2016, 358, 2631; e) M. Xu, Y. Yuan, Y. Wang, Q. Tao, C. Wang, Y. Li, Org. Lett. 2019, 21, 6264; f) S.-Y. Yu, J. Mahmood, H.-J. Noh, J.-M. Seo, S.-M. Jung, S.-H. Shin, Y.-K. Im, I.-Y. Jeon, J.-B. Baek, Angew. Chem., Int. Ed. 2018, 57, 8438; g) G. Zhang, B. Gao, H. Huang, Angew. Chem., Int. Ed. 2015, 54, 7657.
- 3a) L. Klier, T. Bresser, T. A. Nigst, K. Karaghiosoff, P. Knochel, J. Am. Chem. Soc. 2012, 134, 13584; b) J. Pan, J. Liu, Y. Ma, X. Huang, X. Niu, T. Zhang, X. Chen, F. Qiu, Chem. Eng. J. 2017, 317, 317; c) X. Yang, S. H. M. Lim, J. Lin, J. Wu, H. Tang, F. Zhao, F. Liu, C. Sun, X. Shi, Y. Kuang, J. Y. H. Toy, K. Du, Y. Zhang, X. Wang, M. Sun, Z. Song, T. Wang, J. Wu, K. N. Houk, D. Huang, Nat. Commun. 2022, 13, 6424; d) T. Yatabe, X. Jin, K. Yamaguchi, N. Mizuno, Angew. Chem., Int. Ed. 2015, 54, 13302; e) W. Zhang, X. Zhang, D. Feng, Y. Liang, Z. Wu, S. Du, Y.u Zhou, C. Geng, P. Men, C. Fu, X. Huang, X. Lu, Angew. Chem., Int. Ed. 2023, 62, 202215529.
- 4a) M. Einsiedler, C. S. Jamieson, M. A. Maskeri, K. N. Houk, T. A. M. Gulder, Angew. Chem., Int. Ed. 2021, 60, 8297; b) A. Lee, J. L. Zhu, T. Feoktistova, A. C. Brueckner, P. H.-Y. Cheong, K. A. Scheidt, Angew. Chem., Int. Ed. 2019, 58, 5941; c) M. Majdinasab, K. Mitsubayashi, J. L. Marty, Trends Biotechnol. 2019, 37, 898; d) M. Prothiwa, F. Englmaier, T. Böttcher, J. Am. Chem. Soc. 2018, 140, 14019; e) D. Szamosvári, T. Böttcher, Angew. Chem., Int. Ed. 2017, 56, 7271; f) X. Zhao, D. Chen, S. Zhu, J. Luo, S. Liao, B. Zheng, S. Huang, Org. Lett. 2023, 25, 3109.
- 5a) C. L. Allen, J. M. J. Williams, Chem. Soc. Rev. 2011, 40, 3405; b) S. Atobe, H. Masuno, M. Sonoda, Y. Suzuki, H. Shinohara, S. Shibata, A. Ogawa, Tetrahedron Lett. 2012, 53, 1764; c) I. R. Baxendale, S. C. Schou, J. Sedelmeier, S. V. Ley, Chem. - Eur. J. 2010, 16, 89; d) K. Y. Lee, M. J. Lee, J. N. Kim, Tetrahedron 2005, 61, 8705; e) B. Wang, M. Bonin, L. Micouin, J. Org. Chem. 2005, 70, 6126; f) X.-F. Wu, C. Darcel, Eur. J. Org. Chem. 2009, 2009, 1144; g) S. J. Yim, C. H.o Kwon, D. K. An, Tetrahedron Lett. 2007, 48, 5393.
- 6a) C. Tan, P. Wang, H. Liu, X.-L. Zhao, Y. Lu, Y. Liu, Chem. Commun. 2015, 51, 10871; b) P. Gautam, N. J. Tiwari, B. M. Bhanage, ACS Omega 2019, 4, 1560; c) X.-F. Wu, H. Neumann, M. Beller, Chem.-Eur. J. 2010, 16, 12104.
- 7a) A. Dasgupta, V. Ramkumar, S. Sankararaman, Eur. J. Org. Chem. 2016, 2016, 4817; b) M. Ibrahim, I. Malik, W. Mansour, M. Sharif, M. Fettouhi, B. El Ali, Appl. Organomet. Chem. 2018, 32, e4280; c) K. Zhang, Y. Yao, W. Sun, R. Wen, Y. Wang, H. Sun, W. Zhang, G. Zhang, Z. Gao, Chem. Commun. 2021, 57, 13020.
- 8P. Das, W. Linert, Coord. Chem. Rev. 2016, 311, 1.
- 9F.-P. Wu, J.-B. Peng, X. Qi, X.-F. Wu, Catal. Sci. Technol. 2017, 7, 4924.
- 10a) A. Brennführer, H. Neumann, M. Beller, Angew. Chem., Int. Ed. 2009, 48, 4114; b) H. Li, H. Neumann, M. Beller, X.-F. Wu, Angew. Chem., Int. Ed. 2014, 53, 3183; c) Q. Liu, G. Li, J. He, J. Liu, P. Li, A. Lei, Angew. Chem., Int. Ed. 2010, 49, 3371; d) Q. Tian, X. Yin, R. Sun, X. F. Wu, Y. Li, Coord. Chem. Rev. 2023, 475, 214900.
- 11a) B.-H. Min, D.-S. Kim, H.-S. Park, C.-H. Jun, Chem.-Eur. J. 2016, 22, 6234; b) I. Ziccarelli, H. Neumann, C. Kreyenschulte, B. Gabriele, M. Beller, Chem. Commun. 2016, 52, 12729; c) P. Gautam, P. Kathe, B. M. Bhanage, Green Chem. 2017, 19, 823; d) S. Liu, H. Wang, X. Dai, F. Shi, Green Chem. 2018, 20, 3457.
- 12a) V. V. Gaikwad, V. B. Saptal, K. Harada, T. Sasaki, D. Nishio-Hamane, B. M. Bhanage, ChemNanoMat 2018, 4, 575; b) B. Adamcsik, E. Nagy, B. Urbán, P. Szabó, P. Pekker, R. Skoda-Földes, RSC Adv. 2020, 10, 23988.
- 13a) M. Genelot, N. Villandier, A. Bendjeriou, P. Jaithong, L. Djakovitch, V. Dufaud, Catal. Sci. Technol. 2012, 2, 1886; b) R. S. Mane, T. Sasaki, B. M. Bhanage, RSC Adv. 2015, 5, 94776; c) Q. Hu, L. Wang, C. Wang, Y. Wu, Z. Ding, R. Yuan, RSC Adv. 2017, 7, 37200.
- 14a) S.-L. Yang, C.-Y. Cao, F.-F. Wei, P.-P. Huang, Y.-B. Sun, W.-G. Song, ChemCatChem 2014, 6, 1868; b) F. Chen, T. Li, X. Pan, Y. Guo, B. Han, F. Liu, B. Qiao, A. Wang, T. Zhang, Sci. China Mater. 2019, 63, 959; c) C. O. Oseghale, O. R. Onisuru, D. P. Fapojuwo, B. M. Mogudi, P. P. Molokoane, N. P. Maqunga, R. Meijboom, RSC Adv. 2021, 11, 26937.
- 15a) Y. Wang, X. Yang, J. Yu, RSC Adv. 2017, 7, 31850; b) Y. Zhang, Y. Xiong, J. Ge, R. Lin, C. Chen, Q. Peng, D. Wang, Y. Li, Chem. Commun. 2018, 54, 2796; c) S. S. Islam, S. Riyajuddin, R. A. Molla, N. Yasmin, K. Ghosh, S. M. Islam, New J. Chem. 2020, 44, 1979.
- 16a) P. Kast, M. Friedrich, F. Girgsdies, J. Kröhnert, D. Teschner, T. Lunkenbein, M. Behrens, R. Schlögl, Catal. Today 2016, 260, 21; b) M. Bowker, N. Lawes, I. Gow, J. Hayward, J. R. Esquius, N. Richards, L. R. Smith, T. J. A. Slater, T. E. Davies, N. F. Dummer, L. Kabalan, A. Logsdail, R. C. Catlow, S. Taylor, G. J. Hutchings, ACS Catal. 2022, 12, 5371.
- 17a) T. T. Dang, Y. Zhu, J. S. Y. Ngiam, S. C. Ghosh, A. Chen, A. M. Seayad, ACS Catal. 2013, 3, 1406; b) C. Bai, S. Jian, X. Yao, Y. Li, Catal. Sci. Technol. 2014, 4, 3261; c) M. Vico Solano, G. González Miera, V. Pascanu, A. K. Inge, B. Martín-Matute, ChemCatChem 2018, 10, 1089; d) W. Yang, H.-J. Wang, R.-R. Liu, J.-W. Wang, C. Zhang, C. Li, D.-C. Zhong, T.-B. Lu, Angew. Chem., Int. Ed. 2021, 60, 409.
- 18Q.i Wang, D. Astruc, Chem. Rev. 2020, 120, 1438.
- 19Y. Yun, Y. Fang, W. Fu, W. Du, Y. Zhu, H. Sheng, D. Astruc, M. Zhu, Small 2022, 18, 2107459.
- 20L. Li, Z. Li, W. Yang, Y. Huang, G. Huang, Q. Guan, Y. Dong, J. Lu, S.-H. Yu, H.-L. Jiang, Chem 2021, 7, 686.
- 21C. N. Neumann, S. J. Rozeveld, M. Yu, A. J. Rieth, M. Dinca, J. Am. Chem. Soc. 2019, 141, 17477.
- 22a) M. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783; b) W. Yang, X. Lin, W.-J. Shi, J.-H. Zhang, Y.-C. Wang, J.-H. Deng, D.-C. Zhong, T.-B. Lu, J. Mater. Chem. A 2023, 11, 2225; c) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011; d) D.-C. Zhong, Y.-N. Gong, C. Zhang, T.-B. Lu, Chem. Soc. Rev. 2023, 52, 3170.
- 23J. Zhuang, L.-Y. Chou, B. T. Sneed, Y. Cao, P. Hu, L. Feng, C.-K. Tsung, Small 2015, 11, 5551.
- 24S. Sharma, C. Sharma, M. Kaur, S. Paul, New J. Chem. 2021, 45, 20309.
- 25a) Y. Deng, Y. Guo, Z. Jia, J.-C. Liu, J. Guo, X. Cai, C. Dong, M. Wang, C. Li, J. Diao, Z. Jiang, J. Xie, N. Wang, H. Xiao, B. Xu, H. Zhang, H. Liu, J. Li, D. Ma, J. Am. Chem. Soc. 2022, 144, 3535; b) C. Dong, Z. Gao, Y. Li, M. Peng, M. Wang, Y. Xu, C. Li, M. Xu, Y. Deng, X. Qin, F. Huang, X. Wei, Y.-G. Wang, H. Liu, W. Zhou, D. Ma, Nat. Catal. 2022, 5, 485.
- 26M. Yurderi, A. Bulut, M. Zahmakiran, M. Gülcan, S. Özkar, Appl. Catal. B 2014, 160–161, 534.
- 27a) M. Jian, B. Liu, G. Zhang, R. Liu, X. Zhang, Colloids Surf. A Physicochem. Eng. Asp. 2015, 465, 67; b) J. Liu, Y. Chen, Y. Hu, Y. Zhang, G. Zhang, S. Wang, L. Zhang, J. Mol. Liq. 2022, 356, 119057.
- 28a) X. Wang, G. Wu, N. Guan, L. Li, Appl. Catal. B 2012, 115, 7; b) Z. Wang, B. Zhang, S. Yang, X. Yang, F. Meng, L. Zhai, Z. Li, S. Zhao, G. Zhang, Y. Qin, J. Catal. 2022, 414, 385; c) C. Quilis, N. Mota, B. Pawelec, E. Millán, R. M. N. Yerga, Appl. Catal. B 2023, 321, 122064; d) S. Liu, T. Li, F. Shi, H. Ma, B. Wang, X. Dai, X. Cui, Nat. Commun. 2023, 14, 4973.
- 29a) T. Xu, H. Alper, J. Am. Chem. Soc. 2014, 136, 16970; b) Q. Wang, F. Huang, J. Liu, W. Wang, C. Sun, D. Chen, Inorg. Chem. 2019, 58, 10217; c) L. Kollár, A. Takács, C. Molnár, A. Kovács, L. T. Mika, P. Pongrácz, J. Org. Chem. 2023, 88, 5172.
- 30 CCDC-2270437.
- 31X. Song, H. Zhang, Y. Yang, B. Zhang, M. Zuo, X. Cao, J. Sun, C. Lin, X. Li, Z. Jiang, Adv. Sci. 2018, 5, 1800177.