Cd2Nb2Te4O15: A Novel Pseudo-Aurivillius-Type Tellurite with Unprecedented Nonlinear Optical Properties and Excellent Stability
Qiang Wang
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066 P. R. China
Search for more papers by this authorXue-Hua Dong
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066 P. R. China
Search for more papers by this authorLing Huang
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066 P. R. China
Search for more papers by this authorKang-Min Ok
Department of Chemistry, Sogang University, Seoul, 04107 South Korea
Search for more papers by this authorZhi-En Lin
College of Chemistry, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Guo-Hong Zou
College of Chemistry, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected]
Search for more papers by this authorQiang Wang
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066 P. R. China
Search for more papers by this authorXue-Hua Dong
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066 P. R. China
Search for more papers by this authorLing Huang
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066 P. R. China
Search for more papers by this authorKang-Min Ok
Department of Chemistry, Sogang University, Seoul, 04107 South Korea
Search for more papers by this authorZhi-En Lin
College of Chemistry, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Guo-Hong Zou
College of Chemistry, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Oxides are emerging candidates for mid-infrared (mid-IR) nonlinear optical (NLO) materials. However, their intrinsically weak second harmonic generation (SHG) effects hinder their further development. A major design challenge is to increase the nonlinear coefficient while maintaining the broad mid-IR transmission and high laser-induced damage threshold (LIDT) of the oxides. In this study, it is reported on a polar NLO tellurite, Cd2Nb2Te4O15 (CNTO), featuring a pseudo-Aurivillius-type perovskite layered structure composed of three types of NLO active groups, including CdO6 octahedra, NbO6 octahedra, and TeO4 seesaws. The uniform orientation of the distorted units induces a giant SHG response that is ≈31 times larger than that of KH2PO4, the largest value among all reported metal tellurites. Additionally, CNTO exhibits a large band gap (3.75 eV), a wide optical transparency window (0.33–14.5 µm), superior birefringence (0.12@ 546 nm), high LIDT (23 × AgGaS2), and strong acid and alkali resistance, indicating its potential as a promising mid-IR NLO material.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302797-sup-0001-SuppMat.pdf988.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. R. Xiao, S. H. Yang, F. Feng, H. G. Xue, S. P. Guo, Coord. Chem. Rev. 2017, 347, 23; b) J. Z. Zhou, Z. X. Fan, K. W. Zhang, Z. H. Yang, S. L. Pan, J. J. Li, Mater. Horiz. 2023, 10, 619; c) K. C. Chen, C. S. Lin, J. D. Chen, G. S. Yang, H. T. Tian, M. Luo, T. Yan, Z. G. Hu, J. Y. Wang, Y. C. Wu, N. Ye, G. Peng, Angew. Chem., Int. Ed. 2023, 62, e202217039; d) S. P. Guo, X. Y. Cheng, Z. D. Sun, Y. Chi, B. W. Liu, X, M., Jiang, S. F. L.i, H. G. Xue, S. Q. Deng, V. Duppel, J. Kohler, G. C. Guo, Angew. Chem., Int. Ed. 2019, 58, 8087; e) B. W. Li, X. M. Jiang, B. X. Li, H. Y. Zeng, G. C. Guo, Angew. Chem., Int. Ed. 2020, 59, 4856; f) Q. Q. Liu, X. Liu, L. M. Wu, L. Chen, Angew. Chem., Int. Ed. 2022, 61, e202205587; g) C. Wu, X. X. Jiang, L. Lin, Y. L. Hu, T. H. Wu, Z. S. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang, Angew. Chem., Int. Ed. 2021, 60, 22447; h) L. Luo, L. N. Wang, J. B. Chen, J. Z. Zhou, Z. H. Yang, S. L. Pan, J. J. Li, J. Am. Chem. Soc. 2022, 144, 21916; i) R. L. Tang, C. L. Hu, B. L. Wu, Z. Fang, Y. Chen, J. G. Mao, Angew. Chem., Int. Ed. 2019, 58, 15358; j) H. M. Zhou, L. Xiong, L. Chen, L. M. Wu, Angew. Chem., Int. Ed. 2019, 58, 9979; k) R. A. Li, Z. Y. Zhou, Y. K. Lian, F. Jia, X. X. Jiang, M. C. Tang, L. M. Wu, J. L. Sun, L. Chen, Angew. Chem., Int. Ed. 2020, 59, 11861; l) J. D. Chen, H. X. Chen, F. Xu, L. L. Cao, X. T. Jiang, S. D. Yang, Y. S. Sun, X. Zhao, C. S. Lin, N. Ye, J. Am. Chem. Soc. 2021, 143, 10309; m) C. L. Hu, Y. X. Han, Z. Fang, J. G. Mao, Chem. Mater. 2023, 35, 2647; n) I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, M. G. Kanatzidis, J. Am. Chem. Soc. 2010, 132, 384; o) M. M. Chen, S. H. Zhou, W. B. Wei, M. Y. Ran, B. X. Li, X. T. Wu, H. Lin, Q. L. Zhu, ACS Mater. Lett. 2022, 4, 1264; p) M. Y. Ran, S. H. Zhou, W. B. Wei, B. X. Li, X. T. Wu, H. Lin, Q. L. Zhu, Small 2023, 19, 2300248.
- 2C. P. Qian, X. M. Duan, B. Q. Yao, Y. J. Shen, Y. Zhang, B. Zhao, J. H. Yuan, T. Y. Dai, Y. L. Ju, Y. Z. Wang, Opt. Express 2018, 26, 30195.
- 3S. Y. Tochitsky, V. O. Petukhov, V. A. Gorobets, V. V. Churakov, V. N. Jakimovich, Appl. Opt. 1997, 36, 1882.
- 4R. K. Route, R. J. Raymakers, R. S. Feigelson, J. Cryst. Growth 1975, 29, 125.
- 5a) G. Han, Y. Wang, X. Su, Z. Yang, S. L. Pan, Sci. Rep. 2017, 7, 1901;
b) W. Q. Lu, Z. L. Gao, X. T. Liu, X. X. Tian, Q. Wu, C. G. Li, Y. X. Sun, Y. Liu, X. T. Tao, J. Am. Chem. Soc. 2018, 140, 13089;
c) X. L. Du, X. J. Guo, Z. L. Gao, F. A. Liu, F. F. Guo, S. Y. Wang, H. Y. Wang, Y. X. Sun, X. T. Tao, Angew. Chem., Int. Ed. 2021, 60, 23320;
d) J. J. Xu, H. P. Wu, H. W. Yu, W. G. Zhang, Z. G. Hu, J. Wang, Y. C. Wu, P. S. Halasyamani, Chem. Mater. 2020, 32, 906;
e) M. J. Xia, C. Tang, R. K. Li, Angew. Chem., Int. Ed. 2019, 131, 18425;
10.1002/ange.201911324 Google Scholarf) J. Chen, C. L. Hu, F. F. Mao, J. H. Feng, J. G. Mao, Angew. Chem., Int. Ed. 2019, 131, 2120;10.1002/ange.201813968 Google Scholarg) J. K. Wang, Y. S. Cheng, H. P. Wu, Z. G. Hu, J. Y. Wang, Y. C. Wu, H. W. Yu, Angew. Chem., Int. Ed. 2022, 61, e202201616.
- 6H. C. Lan, F. Liang, X. X. Jiang, C. Zhang, H. H. Yu, Z. S. Lin, H. J. Zhang, J. Y. Wang, Y. C. Wu, J. Am. Chem. Soc. 2018, 140, 4684.
- 7a) H. N. Liu, H. P. Wu, Z. G. Hu, J. Y. Wang, Y. C. Wu, H. W. Yu, Chem. Mater. 2022, 34, 3501; b) G. H. Zou, Z. E. Lin, H. M. Zeng, H. Jo, S. J. Lim, T. S. You, K. M. Ok, Chem. Sci. 2018, 9, 8957; c) X. H. Dong, L. Huang, C. F. Hu, H. M. Zeng, Z. E. Lin, X. Wang, K. M. Ok, G. H. Zou, Angew. Chem., Int. Ed. 2019, 58, 6528; d) X. H. Dong, L. Huang, H. M. Zeng, Z. E. Lin, K. M. Ok, G. H. Zou, Angew. Chem., Int. Ed. 2022, 61, e202116790; e) Y. L. Deng, L. Huang, X. H. Dong, L. Wang, K. M. Ok, H. M. Zeng, Z. E. Lin, G. H. Zou, Angew. Chem., Int. Ed. 2020, 59, 21151; f) G. H. Zou, C. S. Lin, H. Jo, G. Nam, T. S. You, K. M. Ok, Angew. Chem., Int. Ed. 2016, 128, 12257; g) T. K. Bera, J. I. Jang, J. H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, M. G. Kanatzidis, J. Am. Chem. Soc. 2010, 132, 3484; h) D. Zhang, Q. Wang, T. Zheng, L. L. Cao, K. M. Ok, D. J. Gao, J. Bi, L. Huang, G. H. Zou, Sci. China Mater. 2022, 65, 3115; i) J. G. Yi, G. H. Zou, Chin. J. Struct. Chem. 2023, 42, 100020.
- 8B. P. Yang, C. L. Hu, X. Xu, C. Huang, J. G. Mao, Inorg. Chem. 2013, 52, 5378.
- 9W. L. Zhang, W. D. Cheng, H. Zhang, L. Geng, C. S. Lin, Z. Z. He, J. Am. Chem. Soc. 2010, 132, 1508.
- 10X. L. Cao, C. L. Hu, X. Xu, F. Kong, J. G. Mao, Chem. Commun. 2013, 49, 9965.
- 11a) G. S. Yang, P. F. Gong, Z. S. Lin, N. Ye, Chem. Mater. 2016, 28, 9122; b) M. Luo, C. S. Lin, D. H. Lin, N. Ye, Angew. Chem., Int. Ed. 2020, 59, 15978; c) X. F. Wang, F. F. Zhang, L. Gao, Z. H. Yang, S. L. Pan, Adv. Sci. 2019, 6, 1901679.
- 12a) M. Luo, Y. X. Song, F. Liang, N. Ye, Z. S. Lin, Inorg. Chem. Front. 2018, 5, 916; b) G. H. Zou, C. S. Lin, H. Jo, G. Nam, T. You, K. M. Ok, Angew. Chem., Int. Ed. 2016, 55, 12078; c) H. W. Yu, N. Z. Koocher, J. M. Rondinelli, P. S. Halasyamani, Angew. Chem., Int. Ed. 2018, 57, 6100.
- 13G. Peng, C. S. Lin, H. X. Fan, K. C. Chen, B. X. Li, G. Zhang, N. Ye, Angew. Chem., Int. Ed. 2021, 60, 17415.
- 14G. Peng, C. S. Lin, N. Ye, J. Am. Chem. Soc. 2020, 142, 20542.
- 15a) Y. Q. Li, X. Zhang, Y. Zhou, W. Q. Huang, Y. P. Song, H. Wang, M. J. Li, M. C. Hong, J. H. Luo, S. G. Zhao, Angew. Chem., Int. Ed. 2022, 134, e202208811; b) T. T. Tran, J. G. He, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2015, 137, 10504; c) J. J. Zhou, Y. Q. Liu, H. P. Wu, H. W. Yu, Z. S. Lin, Z. G. Hu, J. Y. Wang, Y. C. Wu, Angew. Chem., Int. Ed. 2020, 59, 19006; d) M. Mutailipu, F. M. Li, C. C. Jin, Z. H. Yang, K. R. Poeppelmeier, S. L. Pan, Angew. Chem., Int. Ed. 2022, 61, e2022020.
- 16a) X. Li, J. M. Hoffman, M. G Kanatzidis, Chem. Rev. 2021, 121, 2230; b) M. D. Smith, B. A. Connor, H. I. Karunadasa, Chem. Rev. 2019, 119, 3104; c) H. Tsail, W. Nie, J. C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, A. D. Mohite, Nature 2016, 536, 312.
- 17H. Lin, W. B. Wei, H. Chen, X. T. Wu, Q. L. Zhu, Coord. Chem. Rev. 2020, 406, 213150.
- 18Y. F. Ruan, N. Zhang, Y. C. Zhu, W. W. Zhao, J. J. Xu, H. Y. Chen, Anal. Chem. 2017, 89, 7869.
- 19D. Q. Jiang, H. M. Song, T. Wen, Z. M. Jiang, C. Li, K. Liu, W. G. Yang, H. W. Huang, Y. G. Wang, Angew. Chem., Int. Ed. 2022, 61, e202116656.
- 20J. J. Zhou, H. P. Wu, H. W. Yu, S. T. Jiang, Z. G. Hu, J. Y. Wang, Y. C. Wu, P. S. Halasyamani, J. Am. Chem. Soc. 2020, 142, 4616.
- 21 The details of crystal structure data are listed in Tables S1–S3. https://www.ccdc.cam.ac.uk/structures.
- 22a) L. Mao, Y. Wu, C. C. Stoumpos, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 5210; b) C. M. Ji, S. S. Wang, L. N. Li, Z. H. Sun, M. C. Hong, J. H. Luo, Adv. Funct. Mater. 2019, 29, 1805038; c) L. L. Mao, Y. L. Wu, C. C. Stoumpos, B. Traore, C. Katan, J. Even, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 11956.
- 23G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, Appl. Phys. Lett. 1964, 5, 234.
- 24J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, X. T. Tao, Chem. Mater. 2011, 23, 3752.
- 25E. O. Chi, K. M. Ok, Y. Porter, P. S. Halasyamani, Chem. Mater. 2006, 18, 2070.
- 26X. X. Feng, J. J. Zhang, Z. L. Gao, S. J. Zhang, Y. X. Sun, X. T. Tao, Appl. Phys. Lett. 2014, 104, 081912.
- 27J. Goodey, K. M. Ok, J. Broussard, C. Hofmann, F. V. Escobedo, P. S. Halasyamani, J. Solid State Chem. 2003, 175, 3.
- 28S. G. Zhao, J. H. Luo, P. Zhou, S. Q. Zhang, Z. H. Sun, M. C. Hong, RSC Adv. 2013, 3, 14000.
- 29S. G. Zhao, X. X. Jiang, R. He, S. Q. Zhang, Z. H. Sun, J. H. Luo, Z. S. Lin, M. H. Hong, J. Mater. Chem. C 2013, 1, 2906.
- 30Y. L. Hu, C. Wu, X. X. Jiang, Z. J. Wang, Z. P. Huang, Z. S. Lin, X. F. Long, M. G. Humphrey, C. Zhang, J. Am. Chem. Soc. 2021, 143, 12455.
- 31T. Sivakumar, H. Y. Chang, J. Baek, P. S. Halasyamani, Chem. Mater. 2007, 19, 4710.
- 32W. T. A. Harrison, J. H. N. Buttery, Z. Anorg. Allg. Chem. 2000, 626, 867.
- 33Y. Q. Feng, H. T. Fan, Z. G. Zhong, H. W. Wang, G. F. Qiu, Inorg. Chem. 2016, 55, 11987.
- 34H. L. Jiang, S. P. Huang, Y. Fan, J. G. Mao, W. D. Cheng, Chem. - Eur. J. 2008, 14, 1972.
- 35S. D. Nguyen, S. H. Kim, P. S. Halasyamani, Inorg. Chem. 2011, 50, 5215.
- 36C. G. Jin, Appl. Phys. A 2017, 123, 295.
- 37Q. Wu, J. F. Zhou, X. M. Liu, X. X. Jiang, Q. X. Zhang, Z. S. Lin, M. J. Xia, Inorg. Chem. 2021, 60, 18512.
- 38J. H. Kim, J. Baek, P. S. Halasyamani, Chem. Mater. 2007, 19, 5637.
- 39M. L. Liang, Y. X. Ma, C. L. Hu, F. Kong, J. G. Mao, Chem. Mater. 2020, 32, 9688.
- 40Y. Zhou, C. L. Hu, T. Hu, F. Kong, J. G. Mao, Dalton Trans. 2009, 29, 5747.
- 41H. Y. Chang, S. W. Kim, P. S. Halasyamani, Chem. Mater. 2010, 22, 3241.
- 42J. Goodey, J. Broussard, P. S. Halasyamani, Chem. Mater. 2002, 14, 3174.
- 43H. W. Yu, J. Young, H. P. Wu, W. G. Wu, W. G. Zhang, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2016, 138, 4984.
- 44H. S. Ra, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2003, 125, 7764.
- 45K. C. Chen, C. S. Lin, G. Peng, Y. Chen, H. Z. Huang, E. Z. Chen, Y. X. Min, T. Yan, M. Luo, N. Ye, Chem. Mater. 2022, 34, 399.
- 46J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, S. J. Zhang, Y. Liu, X. T. Tao, J. Mater. Chem. 2012, 22, 9921.
- 47L. L. Cao, G. Peng, W. B. Liao, T. Yan, X. F. Long, N. Ye, CrystEngComm 2020, 22, 1956.
- 48K. M. Ok, P. S. Halasyamani, Chem. Mater. 2006, 18, 3176.
- 49X. X. Jiang, S. G. Zhao, Z. S. Lin, J. H. Luo, P. D. Bristowe, X. G. Guan, C. T. Chen, J. Mater. Chem. 2014, 2, 530.
- 50D. A. Kleinman, Phys. Rev. 1962, 126, 1977.