Pt-Pd Nanoalloys Functionalized Mesoporous SnO2 Spheres: Tailored Synthesis, Sensing Mechanism, and Device Integration
Lingxiao Xue
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 China
Search for more papers by this authorYuan Ren
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYanyan Li
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorWenhe Xie
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorKeyu Chen
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Yidong Zou
Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Limin Wu
Institute of Energy and Materials Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yonghui Deng
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLingxiao Xue
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 China
Search for more papers by this authorYuan Ren
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYanyan Li
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorWenhe Xie
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorKeyu Chen
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Yidong Zou
Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Limin Wu
Institute of Energy and Materials Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yonghui Deng
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Methane (CH4), as the vital energy resource and industrial chemicals, is highly flammable and explosive for concentrations above the explosive limit, triggering potential risks to personal and production safety. Therefore, exploiting smart gas sensors for real-time monitoring of CH4 becomes extremely important. Herein, the Pt-Pd nanoalloy functionalized mesoporous SnO2 microspheres (Pt-Pd/SnO2) were synthesized, which show uniform diameter (≈500 nm), high surface area (40.9–56.5 m2 g−1), and large mesopore size (8.8–15.8 nm). The highly dispersed Pt-Pd nanoalloys are confined in the mesopores of SnO2, causing the generation ofoxygen defects and increasing the carrier concentration of sensitive materials. The representative Pt1-Pd4/SnO2 exhibits superior CH4 sensing performance with ultrahigh response (Ra/Rg = 21.33 to 3000 ppm), fast response/recovery speed (4/9 s), as well as outstanding stability. Spectroscopic analyses imply that such an excellent CH4 sensing process involves the fast conversion of CH4 into formic acid and CO intermediates, and finally into CO2. Density functional theory (DFT) calculations reveal that the attractive covalent bonding interaction and rapid electron transfer between the Pt-Pd nanoalloys and SnO2 support, dramatically promote the orbital hybridization of Pd4 sites and adsorbed CH4 molecules, enhancing the catalytic activation of CH4 over the sensing layer.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302327-sup-0001-SuppMat.pdf6.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Hong, J. T. Culp, K. J. Kim, J. Devkota, C. Sun, P. R. Ohodnicki, Trends Anal. Chem. 2020, 125, 115820.
- 2P. Hong, Y. Li, X. Zhang, S. Peng, R. Zhao, Y. Yang, Z. Wang, T. Zou, Y. Wang, J. Mater. Sci. 2019, 30, 14325.
- 3F. Gu, M. Di, D. Han, S. Hong, Z. Wang, ACS Sens. 2020, 5, 2611.
- 4D. Wang, L. Tian, H. Li, K. Wan, X. Yu, P. Wang, A. Chen, X. Wang, J. Yang, ACS Appl. Mater. Interfaces 2019, 11, 12808.
- 5D. Xue, Y. Wang, J. Cao, G. Sun, Z. Zhang, Talanta 2019, 199, 603.
- 6A. Das, D. Panda, Phys. Status Solidi B 2019, 256, 1800296.
10.1002/pssb.201800296 Google Scholar
- 7D. Xue, S. Zhang, Z. Zhang, Mater. Lett. 2019, 237, 336.
- 8C. Yuan, J. Ma, Y. Zou, G. Li, H. Xu, V. V. Sysoev, X. Cheng, Y. Deng, Adv. Sci. 2022, 9, 2203594.
- 9X. Yang, Y. Deng, H. Yang, Y. Liao, X. Cheng, Y. Zou, L. Wu, Y. Deng, Adv. Sci. 2023, 10, 2204810.
- 10X. Zhou, X. Cheng, Y. Zhu, A. A. Elzatahryc, A. Alghamdie, Y, Deng, D. Zhao, Chin. Chem. Lett. 2018, 29, 405.
- 11J. Ma, Y. Li, J. Li, X. Yang, Y. Ren, A. A. Alghamdi, G. Song, K. Yuan, Y. Deng, Adv. Funct. Mater. 2022, 32, 2107439.
- 12Z. Cao, Y. Ge, W. Wang, J. Sheng, Z. Zhang, J. Li, Y. Sun, F. Dong, ACS Sens. 2022, 7, 1757.
- 13H. Shin, D. H. Kim, W. Jung, J. S. Jang, Y. H. Kim, Y. Lee, K. Chang, J. Lee, J. Park, K. Namkoong, I. D. Kim, ACS Nano 2021, 15, 14207.
- 14F. Gu, Y. Cui, D. Han, S. Hong, M. F. Stephanopoulosc, Z. Wang, Appl. Catal. B 2019, 256, 117809.
- 15Y. Ren, X. Zhou, W. Luo, P. Xu, Y. Zhu, X. Li, X. Cheng, Y. Deng, D. Zhao, Chem. Mater. 2016, 28, 7997.
- 16D. Ma, Y. Su, T. Tian, H. Yin, C. Zou, T. Huo, N. Hu, Z. Yang, Y. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 37418.
- 17Y. Liu, R. Guo, K. Yuan, M. Gu, M. Lei, C. Yuan, M. Gao, Y. Ai, Y. Liao, X. Yang, Y. Ren, Y. Zou, Y. Deng, Chem. Mater. 2022, 34, 2321.
- 18Y. Zhu, Y. Zhao, J. Ma, X. Cheng, J. Xie, P. Xu, H. Liu, H. Liu, H. Zhang, M. Wu, A. A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, J. Am. Chem. Soc. 2017, 139, 10365.
- 19J. Hu, C. Zou, Y. Su, M. Li, N. Hu, H. Ni, Z. Yang, Y. Zhang, J. Mater. Chem. C 2017, 5, 6862.
- 20D. Liu, J. Pan, J. Tang, W. Liu, S. Bai, R. Luo, J. Phys. Chem. Solids 2019, 124, 36.
- 21W. Qin, Z. Yuan, Y. Shen, R. Zhang, F. Meng, Chem. Eng. J. 2022, 431, 134280.
- 22H. J. Cho, V. T. Chen, S. Qiao, W. T. Koo, R. M. Penner, I. D. Kim, ACS Sens. 2018, 3, 2152.
- 23Y. Han, D. Huang, Y. Ma, G. He, J. Hu, J. Zhang, N. Hu, Y. Su, Z. Zhou, Y. Zhang, Z. Yang, ACS Appl. Mater. Interfaces 2018, 10, 22640.
- 24Y. K. Moon, S. Y. Jeong, Y. M. Jo, Y. K. Jo, Y. C. Kang, J. H. Lee, Adv. Sci. 2021, 8, 2004078.
- 25Z. Song, W. Tang, Z. Chen, Z. Wan, C. L. J. Chan, C. Wang, W. Ye, Z. Fan, Small 2022, 18, 2203212.
- 26S. Park, Y. Lim, D. H. Oh, J. Ahn, C. Park, M. Kim, W. C. Jung, J. Kim, I. D. Kim, J. Mater. Chem. A 2023, 11, 3535.
- 27H. Cai, N. Luo, Q. Hu, Z. Xue, X. Wang, J. Xu, ACS Sens. 2022, 7, 1484.
- 28J. Shen, S. Xu, C. Zhao, X. Qiao, H. Liu, Y. Zhao, J. Wei, Y. Zhu, ACS Appl. Mater. Interfaces 2021, 13, 57597.
- 29N. Luo, Y. Chen, D. Zhang, M. Guo, Z. Xue, X. Wang, Z. Cheng, J. Xu, ACS Appl. Mater. Interfaces 2020, 12, 56203.
- 30W. B. Jung, S. Y. Cho, B. L. Suh, H. W. Yoo, H. J. Jeon, J. Kim, H. T. Jung, Adv. Mater. 2019, 31, 1805343.
- 31J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu, X. Cheng, P. Xu, X. Li, Y. Deng, D. Zhao, Adv. Funct. Mater. 2018, 28, 1705268.
- 32L. Wan, H. Song, J. Ma, Y. Ren, X. Cheng, J. Su, Q. Yue, Y. Deng, ACS Appl. Mater. Interfaces 2018, 10, 13028.
- 33M. Lei, M. Gao, X. Yang, Y. Zou, A. Alghamdi, Y, R., Y. Deng, ACS Appl. Mater. Interfaces 2021, 13, 51933.
- 34Z. Wu, H. Lei, G. Du, M. Cao, X. Xi, J. Liang, J. Adhes. Sci. Technol. 2016, 30, 2655.
- 35B. Zhang, Y. Tian, J. X. Zhang, W. Cai, J. Mater. Sci. 2011, 46, 1884.
- 36D. Ariyanti, L. Mills, J. Dong, Y. Yao, W. Gao, Mater. Chem. Phys. 2017, 199, 571.
- 37M. Luo, P. Lu, W. Yao, C. Huang, Q. Xu, Q. Wu, Y. Kuwahara, H. Yamashita, ACS Appl. Mater. Interfaces 2016, 8, 20667.
- 38G. Li, X. Wang, L. Yan, Y. Wang, Z. Zhang, J. Xu, ACS Appl. Mater. Interfaces 2019, 11, 26116.
- 39H. C. Kim, R. K. Pramadewandaru, S. U. Lee, J. W. Hong, Bull. Korean Chem. Soc. 2020, 41, 237.
- 40Y. Ren, W. Xie, Y. Li, J. Ma, J. Li, Y. Liu, Y. Zou, Y. Deng, ACS Cent. Sci. 2021, 7, 1885.
- 41A. Amutha, S. Amirthapandian, B. Sundaravel, A. K. Prasad, B. K. Panigrahi, P. Thangadurai, Appl. Surf. Sci. 2016, 360, 731.
- 42A. Amutha, B. K. Panigrahi, S. Amirthapanian, P. Thangadurai, API Conf. Proc. 2014, 1571, 577.
10.1063/1.4872680 Google Scholar
- 43Y. Deng, P. Tian, S. Liu, H. He, Y. Wang, L. Ouyang, S. Yuan, J. Hazard. Mater. 2022, 426, 127793.
- 44B. Feng, Y. Wu, Y. Ren, Y. Chen, K. Yuan, Y. Deng, J. Wei, Sens. Actuators, B 2022, 356, 131358.
- 45Y. Yang, Y. Wang, S. Yin, Appl. Surf. Sci. 2017, 420, 399.
- 46N. Luo, C. Wang, D. Zhang, M. Guo, X. Wang, Z. Cheng, J. Xu, Sens. Actuators, B 2022, 354, 130982.
- 47L. Yang, X. Zhou, L. Song, Y. Wang, X. Wu, N. Han, Y. Chen, ACS Appl. Nano Mater. 2018, 1, 6327.
- 48J. Ma, Y. Li, X. Zhou, X. Yang, F. A. Alharthi, A. A. Alghamdi, X. Cheng, Y. Deng, Small 2020, 16, 2004772.
- 49L. Yao, Y. Li, Y. Ran, Y. Yang, R. Zhao, L. Su, Y. Kong, D. Ma, Y. Chen, Y. Wang, J. Alloys Compd. 2020, 826, 154063.
- 50G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, J. Xu, Sens. Actuators, B 2019, 283, 590.
- 51L. Yang, Z. Wang, X. Zhou, X. Wu, N. Han, Y. Chen, RSC Adv. 2018, 8, 24268.
- 52S. P. Dontala, T. B. Reddy, R. Vadde, Proc. - Indian Acad. Sci., Earth Planet. Sci. 2015, 11, 2.
10.1016/j.proeps.2015.06.002 Google Scholar
- 53K. Li, D. Xu, K. Liu, H. Ni, F. Shen, T. Chen, B. Guan, R. Zhan, Z. Huang, H. Lin, J. Phys. Chem. C 2019, 123, 10377.
- 54H. Na, Z. Liu, T. Zhu, React. Kinet., Mech. Catal. 2014, 111, 137.
- 55F. Boccuzzi, A. Chiorino, J. Phys. Chem. B 2000, 104, 5414.
- 56C. Koutsoupakis, T. Soulimane, C. Varotsis, Chem. - Eur. J. 2015, 21, 4958.
- 57Y. Chen, H. Qin, Y. Cao, H. Zhang, J. Hu, Sensors 2018, 18, 3425.
- 58J. Liu, X. Ma, Y. Li, H. Wang, H. Xiao, J. Li, Nat. Commun. 2018, 9, 1610.
- 59L. P. Yang, X. J. Lin, X. Zhang, W. Zhang, A. M. Cao, L. J. Wan, J. Am. Chem. Soc. 2016, 138, 5916.