Boron-Doping Induced Electron Delocalization in Fluorophosphate Cathode: Enhanced Na-Ion Diffusivity and Sodium-Ion Full Cell Performance
Hong Yu
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorYan Gao
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorHongbo Jing
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorJinjin Wang
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorQinghua Liang
Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000 P. R. China
Search for more papers by this authorJinzhao Kang
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorXiaomei Wang
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorWeihong Qi
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorCorresponding Author
Cheng-Feng Du
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing, 400000 P. R. China
E-mail: [email protected]
Search for more papers by this authorHong Yu
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorYan Gao
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorHongbo Jing
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorJinjin Wang
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorQinghua Liang
Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000 P. R. China
Search for more papers by this authorJinzhao Kang
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorXiaomei Wang
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorWeihong Qi
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorCorresponding Author
Cheng-Feng Du
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing, 400000 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Na3V2(PO4)2O2F (NVPOF) is widely accepted as advanced cathode material for sodium-ion batteries with high application prospects ascribing to its considerable specific capacity and high working voltage. However, challenges in the full realization of its theoretical potential lie in the novel structural design to accelerate its Na+ diffusivity. Herein, considering the important role of polyanion groups in constituting Na+ diffusion tunnels, boron (B) is doped at the P-site to obtain Na3V2(P2−xBxO8)O2F (NVP2−xBxOF). As evidenced by density functional theory modeling, B-doping induces a dramatic decrease in the bandgap. Delocalization of electrons on the O anions in BO4 tetrahedra is observed in NVP2−xBxOF, which dramatically lowers the electrostatic resistance experienced by Na+. As a result, the Na+ diffusivity in the NVP2−xBxOF cathode has accelerated up to 11 times higher, which secures a high rate property (67.2 mAh g−1 at 60 C) and long cycle stability (95.9% capacity retention at 108.6 mAh g−1 at 10 C after 1000 cycles). The assembled NVP1.90B0.10OF//Se-C full cell demonstrates exceptional power/energy density (213.3 W kg−1 @ 426.4 Wh kg−1 and 17970 W kg−1 @ 119.8 Wh kg−1) and outstanding capability to withstand long cycles (90.1% capacity retention after 1000 cycles at 105.3 mAh g−1 at 10 C).
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302097-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y.-S. Hu, Science 2020, 370, 708; b) C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013; c) T. Zhang, Z. Mao, X. Shi, J. Jin, B. He, R. Wang, Y. Gong, H. Wang, Energy Environ. Sci. 2022, 15, 158.
- 2a) H. Yu, X. Ruan, J. Wang, Z. Gu, Q. Liang, J.-M. Cao, J. Kang, C.-F. Du, X.-L. Wu, ACS Nano 2022, 16, 21174; b) C. Xu, J. Zhao, Y.-A. Wang, W. Hua, Q. fu, X. Liang, X. Rong, Q. Zhang, X. Guo, C. Yang, H. Liu, B. Zhong, Y.-S. Hu, Adv. Energy Mater. 2022, 12, 2200966; c) M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S.-L. Chou, S.-X. Dou, Nat. Commun. 2019, 10, 1480; d) M. Chen, W. Hua, J. Xiao, J. Zhang, V. W.-h. Lau, M. Park, G.-H. Lee, S. Lee, W. Wang, J. Peng, L. Fang, L. Zhou, C.-K. Chang, Y. Yamauchi, S. Chou, Y.-M. Kang, J. Am. Chem. Soc. 2021, 143, 18091; e) J. Kim, G. Yoon, M. H. Lee, H. Kim, S. Lee, K. Kang, Chem. Mater. 2017, 29, 7826; f) M. Dou, Y. Zhang, J. Wang, X. Zheng, J. Chen, B. Han, K. Xia, Q. Gao, X. Liu, C. Zhou, R. Sun, Z. Cai, J. Power Sources 2023, 560, 232709.
- 3a) J. Wang, J. Kang, Z.-Y. Gu, Q. Liang, X. Zhao, X. Wang, R. Guo, H. Yu, C.-F. Du, X.-L. Wu, Adv. Funct. Mater. 2022, 32, 2109694; b) K. Subramanyan, M. Akshay, Y.-S. Lee, V. Aravindan, Small Methods 2022, 6, 2200257; c) L. Li, Y. Xu, R. Chang, C. Wang, S. He, X. Ding, Energy Storage Mater. 2021, 37, 325.
- 4a) H. Yu, Y. Gao, J. Wang, Q. Liang, J. Kang, X. Wang, C.-F. Du, Q. Yan, J. Mater. Chem. A 2022, 10, 22105; b) Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao, X.-Y. Zheng, W.-H. Li, Z.-H. Sun, H.-J. Liang, X.-L. Wu, Adv. Mater. 2022, 34, 2110108; c) Y. Zhou, X. Zhang, Y. Liu, X. Xie, X. Rui, X. Zhang, Y. Feng, X. Zhang, Y. Yu, K. Huang, Small 2020, 16, 1906669.
- 5a) S. T. Dacek, W. D. Richards, D. A. Kitchaev, G. Ceder, Chem. Mater. 2016, 28, 5450; b) I. L. Matts, S. Dacek, T. K. Pietrzak, R. Malik, G. Ceder, Chem. Mater. 2015, 27, 6008.
- 6a) T. Broux, T. Bamine, F. Fauth, L. Simonelli, W. Olszewski, C. Marini, M. Ménétrier, D. Carlier, C. Masquelier, L. Croguennec, Chem. Mater. 2016, 28, 7683; b) Y.-U. Park, D.-H. Seo, H. Kim, J. Kim, S. Lee, B. Kim, K. Kang, Adv. Funct. Mater. 2014, 24, 4603; c) Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, W.-H. Li, X. Yang, H.-J. Liang, C.-D. Zhao, X.-L. Wu, Sci. Bull. 2020, 65, 702.
- 7M. Xu, P. Xiao, S. Stauffer, J. Song, G. Henkelman, J. B. Goodenough, Chem. Mater. 2014, 26, 3089.
- 8Z. Hu, R. Zhang, C. Fan, X. Liu, P. Gao, W. Zhang, Z. Liu, S. Han, J. Liu, J. Liu, Small 2022, 18, 2201719.
- 9a) C. Masquelier, C. Wurm, J. Rodríguez-Carvajal, J. Gaubicher, L. Nazar, Chem. Mater. 2000, 12, 525; b) C. Masquelier, L. Croguennec, Chem. Rev. 2013, 113, 6552.
- 10P. Hu, X. Wang, T. Wang, L. Chen, J. Ma, Q. Kong, S. Shi, G. Cui, Adv. Sci. 2016, 3, 1600112.
- 11a) P. Stoch, A. Stoch, M. Ciecinska, I. Krakowiak, M. Sitarz, J. Non-Cryst. Solids 2016, 450, 48; b) F. Sauvage, E. Quarez, J. M. Tarascon, E. Baudrin, Solid State Sci. 2006, 8, 1215.
- 12a) R. Ciceo-Lucacel, I. Ardelean, J. Non-Cryst. Solids 2007, 353, 2020; b) C. P. Varsamis, E. I. Kamitsos, G. D. Chryssikos, Solid State Ionics 2000, 136–137, 1031.
- 13C. Burba, R. Frech, Solid State Ionics 2006, 177, 1489.
- 14a) A. Pitscheider, R. Kaindl, O. Oeckler, H. Huppertz, J. Solid State Chem. 2011, 184, 149; b) R. L. Frost, J. M. Bouzaid, W. N. Martens, B. J. Reddy, J. Raman Spectrosc. 2007, 38, 135.
- 15a) C.-F. Du, Y. Xue, Q. Zeng, J. Wang, X. Zhao, Z. Wang, C. Wang, H. Yu, W. Liu, J. Eur. Ceram. Soc. 2022, 42, 7403; b) X. Li, H. Liang, B. Qin, M. Wang, Y. Zhang, H. Fan, J. Colloid Interface Sci. 2022, 625, 41.
- 16C.-F. Du, Z. Wang, X. Wang, X. Zhao, J. Gao, Y. Xue, Y. Jiang, H. Yu, Q. Ye, Tribol. Int. 2022, 165, 107314.
- 17a) R. Sun, M. Dou, Y. Zhang, J. Chen, Y. Chen, B. Han, K. Xia, Q. Gao, X. Liu, Z. Cai, C. Zhou, Nanoscale 2023, 15, 3345; b) Z.-Y. Gu, J.-Z. Guo, X.-X. Zhao, X.-T. Wang, D. Xie, Z.-H. Sun, C.-D. Zhao, H.-J. Liang, W.-H. Li, X.-L. Wu, InfoMat 2021, 3, 694; c) J. Lee, S. Park, Y. Park, J. Song, B. Sambandam, V. Mathew, J.-Y. Hwang, J. Kim, Chem. Eng. J. 2021, 422, 130052.
- 18J. Wang, X. Zhao, J. Kang, X. Wang, H. Yu, C.-F. Du, Q. Yan, J. Mater. Chem. A 2022, 10, 21531.
- 19a) C. C. Li, B. Wang, D. Chen, L.-Y. Gan, Y. Feng, Y. Zhang, Y. Yang, H. Geng, X. Rui, Y. Yu, ACS Nano 2020, 14, 531; b) Q. Wei, X. Chang, J. Wang, T. Huang, X. Huang, J. Yu, H. Zheng, J.-h. Chen, D.-L. Peng, Adv. Mater. 2022, 34, 2108304; c) D. Chao, C.-H. Lai, P. Liang, Q. Wei, Y.-S. Wang, C. Zhu, G. Deng, V. V. T. Doan-Nguyen, J. Lin, L. Mai, H. J. Fan, B. Dunn, Z. X. Shen, Adv. Energy Mater. 2018, 8, 1800058; d) Z.-L. Xu, G. Yoon, K.-Y. Park, H. Park, O. Tamwattana, S. Joo Kim, W. M. Seong, K. Kang, Nat. Commun. 2019, 10, 2598.
- 20J. Kang, H. Yu, H. Jing, L. Huang, J. Wang, X. Wang, X. Zhao, W. Qi, C.-F. Du, Appl. Surf. Sci. 2023, 619, 156724.
- 21G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 22G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 23J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 24V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
- 25V. I. Anisimov, J. Zaanen, O. K. Andersen, Phys. Rev. B 1991, 44, 943.