In Situ Construction Channels of Lithium-Ion Fast Transport and Uniform Deposition to Ensure Safe High-Performance Solid Batteries
Yangmingyue Zhao
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Libo Li
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
E-mail: [email protected]
Search for more papers by this authorYuhang Shan
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorDa Zhou
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorXiaochuan Chen
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorWenjun Cui
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorHeng Wang
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorYangmingyue Zhao
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Libo Li
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
E-mail: [email protected]
Search for more papers by this authorYuhang Shan
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorDa Zhou
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorXiaochuan Chen
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorWenjun Cui
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorHeng Wang
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040 China
Search for more papers by this authorAbstract
Solid-state lithium-ion batteries (SLIBs) are the promising development direction for future power sources because of their high energy density and reliable safety. To optimize the ionic conductivity at room temperature (RT) and charge/discharge performance to obtain reusable polymer electrolytes (PEs), polyvinylidene fluoride (PVDF), and poly(vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) copolymer combined with polymerized methyl methacrylate (MMA) monomers are used as substrates to prepare PE (LiTFSI/OMMT/PVDF/P(VDF-HFP)/PMMA [LOPPM]). LOPPM has interconnected lithium-ion 3D network channels. The organic-modified montmorillonite (OMMT) is rich in the Lewis acid centers, which promoted lithium salt dissociation. LOPPM PE possessed high ionic conductivity of 1.1 × 10−3 S cm−1 and a lithium-ion transference number of 0.54. The capacity retention of the battery remained 100% after 100 cycles at RT and 0.5 C. The initial capacity of one with the second-recycled LOPPM PE is 123.9 mAh g−1. This work offered a feasible pathway for developing high-performance and reusable LIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202301572-sup-0001-SuppMat.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Chen, Z. Jin, Y. Liu, X. Zhang, H. Wu, M. Li, W. Feng, Q. Zhang, C. Wang, Angew. Chem., Int. Ed. 2022, 61, 202207645.
- 2J. Xie, Y. W. Song, B. Q. Li, H. J. Peng, J. Q. Huang, Q. Zhang, Angew.Chem., Int. Ed. 2020, 59, 22150.
- 3a) J. Xie, S. Y. Sun, X. Chen, L. P. Hou, B. Q. Li, H. J. Peng, J. Q. Huang, X. Q. Zhang, Q. Zhang, Angew. Chem., Int. Ed. 2022, 61, 202204776; b) L. Xu, Y. Xiao, Y. Yang, S. J. Yang, X. R. Chen, R. Xu, Y. X. Yao, W. L. Cai, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2022, 61, 202210365.
- 4a) S. J. Yang, N. Yao, F. N. Jiang, J. Xie, S. Y. Sun, X. Chen, H. Yuan, X. B. Cheng, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2022, 61, 202214545; b) S. J. Gao, W. F. Liu, D. J. Fu, X. G. Liu, New Carbon Mater. 2022, 37, 435.
- 5a) Y. X. Yao, X. Chen, N. Yao, J. H. Gao, G. Xu, J. F. Ding, C. L. Song, W. L. Cai, C. Yan, Q. Zhang, Angew. Chem., Int. Ed. 2023, 62, 202214828; b) S. J. He, K. Q. Zhang, Y. J. Zou, Z. H. Tian, New Carbon Mater. 2022, 37, 898; c) S. Wu, F. Di, J. G. Zheng, H. W. Zhao, H. Zhang, L. X. Li, X. Geng, C. G. Sun, H. M. Yang, W. M. Zhou, D. Y. Ju, B. G. An, New Carbon Mater. 2022, 37, 802.
- 6a) X. Y. Yue, Y. X. Yao, J. Zhang, Z. Li, S. Y. Yang, X. L. Li, C. Yan, Q. Zhang, Angew. Chem., Int. Ed. 2022, 61, 202205697; b) Y. H. Shan, L. B. Li, J. T. Du, M. Zhai, New Carbon Mater. 2021, 36, 1094.
- 7a) N. Meng, H. N. Zhang, S. Lianli, F. Lian, J. Membr. Sci. 2020, 597, 117768; b) F. L. Xu, S. H. Deng, Q. Y. Guo, D. Zhou, X. Y. Yao, Small Methods 2021, 5, 2100262.
- 8Q. Y. Liu, G. J. Yang, X. Y. Li, S. M. Zhang, R. J. Chen, X. F. Wang, Y. R. Gao, Z. X. Wang, L. Q. Chen, Energy Storage Mater. 2022, 51, 443.
- 9K. Xu, Chem. Rev. 2014, 114, 11503.
- 10M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.
- 11J. L. Barton, J. O.'M. Bockris, Proc. R. Soc. London, Ser. A 1962, 268, 485.
- 12L. R. Mangani, C. Villevieille, J. Mater. Chem. 2020, 8, 10150.
- 13E. Dhanumalayan, G. M. Joshi, S. Kaleemulla, R. R. Deshmukh, S. M. Senthil Kumar, Prog. Org. Coat. 2019, 131, 17.
- 14a) D. Ferrah, O. Renault, D. Marinov, J. Arias-Zapata, N. Chevalier, D. Mariolle, D. Rouchon, H. Okuno, V. Bouchiat, G. Cunge, ACS Appl. Energy Mater. 2019, 2, 1356; b) Z. Y. Yang, S. W. Fang, M. Duan, Y. Xiong, X. D. Wang, J. Hazard. Mater. 2020, 386, 121991; c) T. E, D. Ma, S. Y. Yang, X. Hao, J. Alloys Compd. 2020, 832, 154833.
- 15R. França, M. Bebsh, A. Haimeur, A. CarlaFernandes, E. Sacher, Ceram. Int. 2020, 46, 1411.
- 16V. Jabbari, V. Yurkiv, M. G. Rasul, M. T. Saray, R. Rojaee, F. Mashayek, R. Shahbazian-Yassar, Energy Storage Mater. 2022, 46, 352.
- 17a) D. D. Han, S. Liu, Y. T. Liu, Z. Zhang, G. R. Li, X. P. Gao, J. Mater. Chem. 2018, 6, 18627; b) Y. Z. Li, Y. B. Li, A. Pei, K. Yan, Y. M. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrion, B. Butz, S. Chu, Y. Cui, Science 2017, 358, 506.
- 18a) M. O. Nwodo, S. C. Ezugwu, F. I. Ezema, R. U. Osuji, P. U. Asogwa, J. Optoelectron. Biomed. Mater. 2011, 3, 95; b) A. M. N. Saeed, A. Hezam, M. Q. A. Al-Gunaid, S. T. E. Siddaramaiah, Polym.–Plast. Tech. Mat. 2020, 60, 132.
- 19K. Sreekanth, T. Siddaiah, N. O. Gopal, Y. M. Kumar, C. Ramu, J. Sci.-Adv. Mater. Dev. 2019, 4, 230.
- 20a) R. B. Luo, Y. T. Wu, Q. Q. Li, B. Du, S. S. Zhou, H. B. Li, Synth. Met. 2021, 274, 116720; b) U. Mehmood, N. A. Karim, H. F. Zahid, T. Asif, M. Younas, Mater. Lett. 2019, 256, 126651; c) V. Elayappan, V. Murugadoss, S. Angaiah, Z. F. Fei, P. J. Dyson, J. Appl. Polym. Sci. 2015, 132, 45.
- 21S. L. Gao, Z. X. Li, N. Liu, G. L. Liu, H. B. Yang, P. F. Cao, Adv. Funct. Mater. 2022, 32, 2202013.
- 22S. W. Oh, V. H. Nguyen, V.-T. Bui, S. H. Nam, M. Mahato, I.-K. Oh, ACS Appl. Mater. Interfaces 2020, 12, 11657.
- 23P. K. Singh, K. W. Kim, H. W. Rhee, Electrochem. Commun. 2009, 11, 1247.
- 24a) S. Jayanthi, S. Shenbagavalli, M. Muthuvinayagam, B. Sundaresan, Mater. Sci. Eng., B 2022, 285, 115942; b) S. Jayanthi, B. Sundaresan, Polym.–Plast. Technol. Mater. 2020, 59, 2050.
- 25S. Mishra, A. K. Singh, J. K. Singh, J. Membr. Sci. 2020, 593, 117422.
- 26X. P. Li, H. Shan, M. Cao, B. A. Li, J. Membr. Sci. 2019, 589, 117262.
- 27S. K. Chacko, M. T. Rahul, B. Raneesh, N. Kalarikkal, New J. Chem. 2020, 44, 11356.
- 28K. T. L. Trinh, N. X. T. Le, N. Y. Lee, Lab Chip 2020, 20, 3524.
- 29Y. N. Zhao, W. E. Tenhaeff, ACS Appl. Energy Mater. 2020, 2, 80.
- 30G. H. Chen, L. Ye, K. Zhang, M. Gao, H. Lu, H. J. Xu, Y. Bai, C. Wu, Chem. Eng. J. 2020, 394, 124885.
- 31Y. Y. He, Y. Li, Q. S. Tong, J. D. Zhang, J. Z. Weng, M. Q. Zhu, ACS Appl. Mater. Interfaces 2021, 13, 41593.
- 32a) K. H. Nie, Y. S. Hong, J. L. Qiu, Q. H. Li, X. Q. Yu, H. Li, L. Q. Chen, Front. Chem. 2018, 6, 616; b) J. B. Goodenough, Energy Environ. Sci. 2014, 7, 14.
- 33S. Huo, L. Sheng, W. D. Xue, L. Wang, H. Xu, H. Zhang, X. M. He, InfoMat 2023, 5, 12394.
- 34H. P. Li, Y. X. Kuai, J. Y., S.-I. Hirano, Y. N. Nuli, J. L. Wang, J. Energy Chem. 2022, 65, 616.
- 35Z. Y. Huang, R.-A. Tong, J. Zhang, L. H. Chen, C.-A. Wang, J. Power Sources 2020, 451, 227797.
- 36H. Rajati, A. H. Navarchian, D. Rodrigue, S. Tangestaninejad, Sep. Purif. Technol. 2020, 235, 116149.
- 37a) J. Y. Wang, F. S. Genier, H. S. Li, S. Biria, L. D. Hosein, ACS Appl. Energy Mater. 2019, 1, 1837; b) S. Mallick, Z. Ahmad, F. Touati, R. A. Shakoor, Sens. Actuators, B 2019, 288, 408; c) Y. C. Li, D. M. Zhang, S. S. Wang, Y. H. Zhan, J. Yin, X. Q. Tao, X. C. Ge, S. C. Tjong, H.-Y. Liu, Y. W. Mai, Compos. Sci. Technol. 2019, 171, 152.
- 38a) C. Zuo, M. L. Yang, Z. J. Wang, K. Jiang, S. B. Li, W. Luo, D. He, C. M. Liu, X. L. Xie, Z. G. Xue, J. Mater. Chem. 2019, 7, 18871; b) L. F. Han, J. L. Wang, X. W. Mu, T. Wu, C. Liao, N. Wu, W. Y. Xing, L. Song, Y. C. Kan, Y. Hu, J. Colloid Interface Sci. 2021, 585, 596.
- 39a) F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. A. Hendrickson, Electrochim. Acta 2001, 46, 2457; b) S. Mazhar, A. A. Qarni, Y. U. Haq, Z. U. Haq, I. Murtaza, Ceram. Int. 2020, 46, 12593.
- 40K. M. Diederichsen, H. G. Buss, B. D. McCloskey, Macromolecules 2017, 50, 3831.
- 41Y. S. Lia, Y. Qi, Energy Environ. Sci. 2019, 12, 1286.
- 42Y. Li, M. Q. Liu, X. Feng, Y. Li, F. Wu, Y. Bai, C. Wu, ACS Energy Lett. 2021, 6, 3307.
- 43B. Chen, Z. Huang, X. T. Chen, Y. R. Zhao, Q. Xu, P. Long, S. J. Chen, X. X. Xu, Electrochim. Acta 2016, 210, 905.
- 44a) Y. M. Jin, X. Zong, X. B. Zhang, Z. G. Jia, H. J. Xie, Y. P. Xiong, Energy Storage Mater. 2022, 49, 433; b) M. Green, K. Kaydanik, M. Orozco, L. Hanna, M. A. T. Marple, K. A. S. Fessler, W. B. Jones, V. Stavila, P. A. Ward, J. A. Teprovich Jr, Adv. Sci. 2022, 9, 2106032.
- 45J. Zhang, C. Zheng, L. J. Li, Y. Xia, H. Huang, Y. P. Gan, C. Liang, X. P. He, X. Y. Tao, W. K. Zhang, Adv. Energy Mater. 2019, 10, 1903311.
- 46N. Riphaus, B. Stiaszny, H. Beyer, S. Indris, H. A. Gasteiger, S. J. Sedlmaier, J. Electrochem. Soc. 2019, 166, A975.
- 47T. Krauskopf, H. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2019, 11, 14463.
- 48K. H. Han, J. Y. Seok, I. H. Kim, K. Woo, J. H. Kim, G. G. Yang, H. J. Choi, S. Kwon, E. I. Jung, S. O. Kim, Adv. Mater. 2022, 34, 2203992.
- 49Z. Y. Wang, Y. M. Wang, P. Zhai, P. Poldorn, S. Jungsuttiwong, S. Yuan, J. Energy Chem. 2022, 75, 340.
- 50a) X. B. Han, L. G. Lu, Y. J. Zheng, X. N. Feng, Z. Li, J. Q. Li, M. G. Ouyang, eTransportation 2019, 1, 100005; b) L. Wang, X. M. He, W. T. Sun, J. L. Wang, Y. D. Li, S. S. Fan, Nano Lett. 2012, 12, 5632.
- 51Y. B. Xu, H. P. Wu, H. Jia, J.-G. Zhang, W. Xu, C. M. Wang, ACS Nano 2020, 14, 8766.