Learning and Predicting Photonic Responses of Plasmonic Nanoparticle Assemblies via Dual Variational Autoencoders
Muammer Y. Yaman
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorSergei V. Kalinin
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996 USA
Search for more papers by this authorKathryn N. Guye
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorCorresponding Author
David S. Ginger
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Maxim Ziatdinov
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorMuammer Y. Yaman
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorSergei V. Kalinin
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996 USA
Search for more papers by this authorKathryn N. Guye
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorCorresponding Author
David S. Ginger
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Maxim Ziatdinov
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The application of machine learning is demonstrated for rapid and accurate extraction of plasmonic particles cluster geometries from hyperspectral image data via a dual variational autoencoder (dual-VAE). In this approach, the information is shared between the latent spaces of two VAEs acting on the particle shape data and spectral data, respectively, but enforcing a common encoding on the shape-spectra pairs. It is shown that this approach can establish the relationship between the geometric characteristics of nanoparticles and their far-field photonic responses, demonstrating that hyperspectral darkfield microscopy can be used to accurately predict the geometry (number of particles, arrangement) of a multiparticle assemblies below the diffraction limit in an automated fashion with high fidelity (for monomers (0.96), dimers (0.86), and trimers (0.58). This approach of building structure-property relationships via shared encoding is universal and should have applications to a broader range of materials science and physics problems in imaging of both molecular and nanomaterial systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in https://github.com/ziatdinovmax/dualVAE at https://github.com/ziatdinovmax/dualVAE, reference number 1.
Supporting Information
Filename | Description |
---|---|
smll202205893-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Karker, G. Dharmalingam, M. A. Carpenter, ACS Nano 2014, 8, 10953.
- 2J. G. Smith, J. A. Faucheaux, P. K. Jain, Nano Today 2015, 10, 67.
- 3M. Du, G. H. Tang, Sol. Energy 2016, 137, 393.
- 4M. S. G. Hamed, J. N. Ike, G. T. Mola, J Phys D Appl Phys 2021, 55, 015102.
- 5A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D. S. Ginger, Nano Lett. 2010, 10, 1501.
- 6K. Yao, M. Salvador, C.-C. Chueh, X.-K. Xin, Y.-X. Xu, D. W. deQuilettes, T. Hu, Y. Chen, D. S. Ginger, A. K.-Y. Jen, Adv. Energy Mater. 2014, 4, 1400206.
- 7X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115.
- 8A. M. Gobin, M. Ho Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, Nano Lett. 2007, 7, 1929.
- 9M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. Paul Robinson, R. Bashir, N. J. Halas, S. E. Clare, Nano Lett. 2007, 7, 3759.
- 10S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, Nat. Mater. 2003, 2, 229.
- 11Jiang, K. Bosnick, M. Maillard, L. Brus, J. Phys. Chem. B 2003, 107, 9964.
- 12N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
- 13B. Nikoobakht, M. A. El-Sayed, J. Phys. Chem. A 2003, 107, 3372.
- 14J. I. L. Chen, H. Durkee, B. Traxler, D. S. Ginger, Small 2011, 7, 1993.
- 15S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Adv. Mater. 2001, 13, 1501.
- 16W. Y. Huang, W. Qian, M. A. El-Sayed, Adv. Mater. 2008, 20, 733.
- 17K. N. Guye, H. Shen, M. Y. Yaman, G. Y. Liao, D. Baker, D. S. Ginger, Langmuir 2021, 37, 9111.
- 18M. Y. Yaman, K. N. Guye, M. Ziatdinov, H. Shen, D. Baker, S. v Kalinin, D. S. Ginger, Soft Matter 2021, 17, 6109.
- 19A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Liedl, Nature 2012, 483, 311.
- 20X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, B. Ding, J. Am. Chem. Soc. 2011, 134, 146.
- 21A. M. Funston, C. Novo, T. J. Davis, P. Mulvaney, Nano Lett. 2009, 9, 1651.
- 22N. Gandra, A. Abbas, L. Tian, S. Singamaneni, Nano Lett. 2012, 12, 2645.
- 23J.-Y. Kim, J. Yeom, G. Zhao, H. Calcaterra, J. Munn, P. Zhang, N. Kotov, J. Am. Chem. Soc. 2019, 141, 11739.
- 24L. Yao, Z. Ou, B. Luo, C. Xu, Q. Chen, ACS Cent. Sci. 2020, 6, 1421.
- 25J. I. L. Chen, Y. Chen, D. S. Ginger, J. Am. Chem. Soc. 2010, 132, 9600.
- 26S. Samai, Z. Qian, J. Ling, K. N. Guye, D. S. Ginger, ACS Applied Materials & Interfaces 2018, 10, 8976.
- 27A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, D. W. McComb, ACS Nano 2009, 3, 3015.
- 28J. Szczerbiński, L. Gyr, J. Kaeslin, R. Zenobi, Nano Lett. 2018, 18, 6740.
- 29P. K. Jain, W. Huang, M. A. El-Sayed, Nano Lett. 2007, 7, 2080.
- 30R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, A. Chilkoti, ACS Nano 2012, 6, 9237.
- 31L. Na, H. Mario, W. Thomas, A. A. Paul, G. Harald, Science (1979) 2011, 332, 1407.
- 32I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski, Light Sci Appl 2018, 7, 60.
- 33P. R. Wiecha, A. Lecestre, N. Mallet, G. Larrieu, Nature Nanotechnology 2019, 14, 237.
- 34J. Zhou, B. Huang, Z. Yan, J.-C. G. Bünzli, Light Sci Appl 2019, 8, 84.
- 35E. X. Tan, Y. Chen, Y. H. Lee, Y. X. Leong, S. X. Leong, C. V. Stanley, C. S. Pun, X. Y. Ling, Nanoscale Horiz. 2022, 7, 626.
- 36T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, K. Xu, Photonics Res 2019, 7, 368.
- 37K. Kojima, T. Koike-Akino, Y. Tang, Y. Wang, in OSA Advanced Photonics Congress 2021, Optica Publishing Group, Beijing, China 2021, p. IF3A.6.
10.1364/IPRSN.2021.IF3A.6 Google Scholar
- 38O. Avci, C. Yurdakul, M. Selim Ünlü, Appl. Opt. 2017, 56, 4238.
- 39M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, W. Gao, Nanoscale 2016, 8, 4452.
- 40K. Lance Kelly, E. Coronado, L. Lin Zhao, G. C. Schatz, J. Phys. Chem. B 2002, 107, 668.
- 41C. Tabor, R. Murali, M. Mahmoud, M. A. El-Sayed, J. Phys. Chem. A 2008, 113, 1946.
- 42J. Hee Yoon, F. Selbach, L. Schumacher, J. Jose, S. Schlücker, ACS Photonics 2019, 6, 642.
- 43Q. Zhang, G.-C. Li, T. W. Lo, D. Y. Lei, J Opt 2018, 20, 024010.
- 44C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109, 13857.
- 45Y. Liu, R. K. Vasudevan, K. K. Kelley, D. Kim, Y. Sharma, M. Ahmadi, S. v Kalinin, M. Ziatdinov, Mach Learn Sci Technol 2021, 2, 045028.
10.1088/2632-2153/ac28de Google Scholar
- 46K. M. Roccapriore, M. Ziatdinov, S. H. Cho, J. A. Hachtel, S. v Kalinin, Small 2021, 17, 2100181.
- 47M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, S. v Kalinin, ACS Nano 2017, 11, 12742.
- 48S. v. Kalinin, S. Zhang, M. Valleti, H. Pyles, D. Baker, J. J. de Yoreo, M. Ziatdinov, ACS Nano 2021, 15, 6471.
- 49S. V. Kalinin, D. Ondrej, J. Stephen, Z. Maxim, Sci. Adv. 2021, 7, eabd5084.
- 50M. P. Oxley, M. Ziatdinov, O. Dyck, A. R. Lupini, R. Vasudevan, S. v Kalinin, npj Comput. Mater. 2021, 7, 65.
- 51Y. Liu, R. Proksch, C. Y. Wong, M. Ziatdinov, S. v Kalinin, Adv. Mater. 2021, 33, 2103680.
- 52S. v. Kalinin, M. P. Oxley, M. Valleti, J. Zhang, R. P. Hermann, H. Zheng, W. Zhang, G. Eres, R. K. Vasudevan, M. Ziatdinov, npj Comput. Mater. 2021, 7, 181.
- 53M. Ziatdinov, C. Y. Wong, S. v Kalinin, arXiv:2106.12472 [cond-mat] 2021.
- 54S. v. Kalinin, K. Kelley, R. K. Vasudevan, M. Ziatdinov, ACS Appl. Mater. Interfaces 2021, 13, 1693.
- 55K. M. Roccapriore, M. Ziatdinov, S. H. Cho, J. A. Hachtel, S. V. Kalinin, Small 2021, 17, 2100181.
- 56M. Ziatdinov, M. Y. Yaman, Y. Liu, D. Ginger, S. V. Kalinin, arXiv:2105.11475 2021.
- 57M. Ziatdinov, S. V. Kalinin, arXiv:2104.10180 2021.
- 58Amit Singhal, Bulletin Of The Ieee Computer Society Technical Committee On Data Engineering 2001, 24.
- 59J. R. Hershey, P. A. Olsen, in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07, IEEE, 2007, pp. IV–317.
- 60D. P. Kingma, J. Ba, arXiv preprint arXiv:1412.6980 2014.
- 61Y. Yan, J. I. L. Chen, D. S. Ginger, Nano Lett. 2012, 12, 2530.
- 62J. H. Yoon, F. Selbach, L. Schumacher, J. Jose, S. Schlücker, ACS Photonics 2019, 6, 642.
- 63S. Samai, T. L. Y. Choi, K. N. Guye, Y. Yan, D. S. Ginger, J. Phys. Chem. C 2018, 122, 13363.
- 64A. Crut, P. Maioli, N. del Fatti, F. Vallée, Chem. Soc. Rev. 2014, 43, 3921.
- 65C. Schopf, E. Noonan, A. J. Quinn, D. Iacopino, R. Comparelli, L. Curri, M. Striccoli, Crystals 2016, 6, 117.
- 66S. K. Pal, H. Chatterjee, S. K. Ghosh, RSC Adv. 2019, 9, 42145.
- 67R. Dosselmann, X. D. Yang, Signal Image Video Process 2011, 5, 81.
- 68P. B. Johnson, R. W. Christy, Phys. Rev. B 1972, 6, 4370.
- 69T. A. F. König, P. A. Ledin, J. Kerszulis, Mahmoud. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, V. v Tsukruk, ACS Nano 2014, 8, 6182.