Lithium Bonds Enable Small Biomass Molecule-Based Ionoelastomers with Multiple Functions for Soft Intelligent Electronics
Chao Dang
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorFei Zhang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
Search for more papers by this authorYuehu Li
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorZixian Jin
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
Search for more papers by this authorYabin Cheng
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
Search for more papers by this authorYufan Feng
Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034 P. R. China
Search for more papers by this authorXijun Wang
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorCunzhi Zhang
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorYian Chen
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorCorresponding Author
Changyou Shao
Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qingbin Zheng
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haisong Qi
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChao Dang
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorFei Zhang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
Search for more papers by this authorYuehu Li
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorZixian Jin
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
Search for more papers by this authorYabin Cheng
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
Search for more papers by this authorYufan Feng
Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034 P. R. China
Search for more papers by this authorXijun Wang
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorCunzhi Zhang
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorYian Chen
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
Search for more papers by this authorCorresponding Author
Changyou Shao
Center for Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning, 116034 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qingbin Zheng
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518175 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haisong Qi
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510641 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Lipoic acid (LA), which originates from animals and plants, is a small biomass molecule and has recently shown great application value in soft conductors. However, the severe depolymerization of LA places a significant limitation on its utilization. A strategy of using Li-bonds as both depolymerization quenchers and dynamic mediators to melt transform LA into high-performance ionoelastomers (IEs) is proposed. They feature dry networks while simultaneously combining transparency, stretchability, conductivity, self-healing ability, non-corrosive property, re-mouldability, strain-sensitivity, recyclability, and degradability. Most of the existing soft conductors’ drawbacks, such as the tedious synthesis, non-renewable polymer networks, limited functions, and single-use only, are successfully solved. In addition, the multi-functions allow IEs to be used as soft sensors in human–computer interactive games and wireless remote sports assistants. Notably, the recycled IE also provides an efficient conductive filler for transparent ionic papers, which can be used to design soft transparent triboelectric nanogenerators for energy harvesting and multidirectional motion sensing. This work creates a new direction for future research involving intelligent soft electronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202200421-sup-0001-SuppMat.pdf2.3 MB | Supporting Information |
smll202200421-sup-0002-MovieS1.mp43 MB | Supplemental Movie 1 |
smll202200421-sup-0003-MovieS2.mp43.3 MB | Supplemental Movie 2 |
smll202200421-sup-0004-MovieS3.mp41 MB | Supplemental Movie 3 |
smll202200421-sup-0005-MovieS4.mp44.4 MB | Supplemental Movie 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Keplinger, J. Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, Z. Suo, Science 2013, 341, 984.
- 2C. C. Kim, H. H. Lee, K. H. Oh, J. Y. Sun, Science 2016, 353, 682.
- 3P. Zhang, Y. Chen, Z. H. Guo, W. Guo, X. Pu, Z. L. Wang, Adv. Funct. Mater. 2020, 30, 1909252.
- 4Y. Zhang, M. Li, B. Qin, L. Chen, Y. Liu, X. Zhang, C. Wang, Chem. Mater. 2020, 15, 6310.
- 5Z. Cao, H. Liu, L. Jiang, Mater. Horiz. 2020, 7, 912.
- 6L, S., T. Zhu, G. Gao, X. Zhang, W. Wei, W. Liu, S. Ding, Nat. Commun. 2018, 9, 2630.
- 7Y. Jin, Z. Lei, P. Taynton, S. Huang, W. Zhang, Matter 2019, 1, 1456.
- 8M. A. Alraddadi, V. Chiaradia, C. J. Stubbs, J. C. Worch, A. P. Dove, Polym. Chem. 2021, 12, 5796.
- 9B. H. Robinson, Sci. Total Environ. 2009, 408, 183.
- 10Y. Guo, S. Chen, L. Sun, L. Yang, L. Zhang, J. Lou, Z. You, Adv. Funct. Mater. 2021, 31, 2009799.
- 11M. S. Kim, J. Y. Park, C. Namkoong, P. J. Jang, J. W. Ryu, H. S. Song, J. Y. Yun, I. S. Namgoong, J. Ha, I. S. Park, I. K. Lee, B. Viollet, J. H. Youn, H. K. Lee, K. U. Lee, Nat. Med. 2004, 10, 727.
- 12Q. Zhang, C. Y. Shi, D. H. Qu, Y. T. Long, B. L. Feringa, H. Tian, Sci. Adv. 2018, 4, aat8192.
- 13C. Dang, M. Wang, J. Yu, Y. Chen, S. Zhou, X. Feng, D. Liu, H. Qi, Adv. Funct. Mater. 2019, 29, 1902467.
- 14C. Dang, F. Peng, H. Liu, X. Feng, Y. Liu, S. Hu, H. Qi, J. Mater. Chem. A 2021, 9, 13115.
- 15Y. Deng, Q.i. Zhang, B. L. Feringa, H. Tian, D. H. Qu, Angew. Chem. 2020, 132, 5316.
- 16Y. Chen, K. H. Chan, X. Q. Wang, T. Ding, T. Li, C. Zhang, W. Lu, Y. Zhou, G. W. Ho, Adv. Funct. Mater. 2021, 31, 2101825.
- 17Y. Wang, S. Sun, P. Wu, Adv. Funct. Mater. 2021, 24, 2101494.
- 18X. Chen, Y. K. Bai, C. Z. Zhao, X. Shen, Q. Zhang, Angew. Chem. 2020, 132, 11288.
10.1002/ange.201915623 Google Scholar
- 19B. Yiming, Y. Han, Z. Han, X. Zhang, Y. Li, W. Lian, M. Zhang, J. Yin, T. Sun, Z. Wu, T. Li, J. Fu, Z. Jia, S. Qu, Adv. Mater. 2021, 2006111.
- 20G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si, W. Huang, X. Chen, Adv. Funct. Mater. 2018, 32, 1802576.
- 21C. Dang, C. Shao, H. Liu, Y. Chen, H. Qi, Nano Energy 2021, 90, 106619.
- 22Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu, L. Liu, F. Yan, Sci. Adv. 2019, 5, aax0648.
- 23R. Tamate, K. Hashimoto, T. Horii, M. Hirasawa, X. Li, M. Shibayama, M. Watanabe, Adv. Mater. 2018, 30, 1802792.
- 24L. Han, K. Liu, M. Wang, K. Wang, L. Fang, H. Chen, J. Zhou, X. Lu, Adv. Funct. Mater. 2018, 28, 1704195.
- 25Y. Cao, T. G. Morrissey, E. Acome, S. I. Allec, B. M. Wong, C. Keplinger, C. Wang, Adv. Mater. 2017, 10, 1605099.
- 26C. H. Li, C. Wang, C. Keplinger, J. L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, C. Linder, X. Z. You, Z. Bao, Nat. Chem. 2016, 8, 618.
- 27G. Ye, Z. Song, T. Yu, Q. Tan, Y. Zhang, T. Chen, C. He, L. Jin, N. Liu, ACS Appl. Mater. Interfaces 2020, 1, 1486.
- 28B. Zhang, P. Zhang, H. Zhang, C. Yan, Z. Zheng, B. Wu, Y. Yu, Macromol. Rapid Commun. 2017, 38, 1700110.
- 29L. Zhang, D. Wang, L. Xu, X. Zhang, A. Zhang, Y. Xu, J. Mater. Chem. C 2020, 8, 2043.
- 30X. Guo, F. Yang, W. Liu, C. Han, Y. Bai, X. Sun, L. Hao, W. Jiao, R. Wang, J. Mater. Chem. A 2021, 9, 14806.
- 31Y. Cao, H. Wu, S. I. Allec, B. M. Wong, D. S. Nguyen, C. Wang, Adv. Mater. 2018, 49, 1804602.
- 32Z. Jia, Y. Zeng, P. Tang, D. Gan, W. Xing, Y. Hou, K. Wang, C. Xie, X. Lu, Chem. Mater. 2019, 15, 5625.
- 33Z. Liu, P. Hong, Z. Huang, T. Zhang, R. Xu, L. Chen, H. Xiang, X. Liu, Chem. Eng. J. 2020, 387, 124142.
- 34J. Sun, X. Pu, M. Liu, A. Yu, C. Du, J. Zhai, W. Hu, Z. L. Wang, ACS Nano 2018, 6, 6147.
- 35L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun, Z. Wu, M. Qin, Q. Guan, Z. You, Adv. Fiber Mater. 2021, 4, 98.
- 36D. Wang, J. H. Xu, J. Y. Chen, P. Hu, Y. Wang, W. Jiang, J. J. Fu, Adv. Funct. Mater. 2020, 3, 1907109.
- 37X. Wang, F. Chen, G. M. A. Girard, H. Zhu, D. R. MacFarlane, D. Mecerreyes, M. Armand, P. C. Howlett, M. Forsyth, Joule 2019, 11, 2687.
- 38Q. Zhang, Y. X. Deng, H. X. Luo, C. Y. Shi, G. M. Geise, B. L. Feringa, H. Tian, D. H. Qu, J. Am. Chem. Soc. 2019, 141, 12804.
- 39C. Dang, Z. Huang, Y. Chen, S. Zhou, X. Feng, G. Chen, F. Dai, H. Qi, ACS Appl. Mater. Interfaces 2020, 19, 21528.
- 40Q. Tang, H. Guo, P. Yan, C. Hu, EcoMat 2020, 2, 12060.
- 41K. Dong, X. Peng, J. An, A. C. Wang, J. Luo, B. Sun, J. Wang, Z. L. Wang, Nat. Commun. 2020, 11, 2868.
- 42Z. L. Wang, Nano Energy 2020, 68, 104272.
- 43Z. Wang, Y. Wu, W. Jiang, Q. Liu, X. Wang, J. Zhang, Z. Zhou, H. Zheng, Z. Wang, Z. L. Wang, Adv. Funct. Mater. 2021, 34, 2103081.
- 44Y. Zhang, X. Gao, Y. Zhang, J. Gui, C. Sun, H. Zheng, S. Guo, Nano Energy 2022, 92, 106788.