Realizing Enhanced Thermoelectric Performance and Hardness in Icosahedral Cu5FeS4−xSex with High-Density Twin Boundaries
Huan Wang
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorSikang Zheng
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorHong Wu
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorXin Xiong
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorQihong Xiong
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorHengyang Wang
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorYang Wang
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorBin Zhang
Analytical and Testing Center, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorXu Lu
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Guang Han
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Guoyu Wang
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 P. R. China
University of Chinese Academy of Sciences, Beijing, 100044 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xiaoyuan Zhou
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Analytical and Testing Center, Chongqing University, Chongqing, 401331 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorHuan Wang
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorSikang Zheng
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorHong Wu
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorXin Xiong
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorQihong Xiong
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorHengyang Wang
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorYang Wang
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorBin Zhang
Analytical and Testing Center, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorXu Lu
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Guang Han
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Guoyu Wang
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 P. R. China
University of Chinese Academy of Sciences, Beijing, 100044 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xiaoyuan Zhou
College of Physics, Chongqing University, Chongqing, 401331 P. R. China
Analytical and Testing Center, Chongqing University, Chongqing, 401331 P. R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Bornite (Cu5FeS4) is an Earth-abundant, nontoxic thermoelectric material. Herein, twin engineering and Se alloying are combined in order to further improve its thermoelectric performance. Cu5FeS4−xSex (0 ≤ x ≤ 0.4) icosahedral nanoparticles, containing high-density twin boundaries, have been synthesized by a colloidal method. Spark plasma sintering retains twin boundaries in the pellets sintered from Cu5FeS4−xSex colloidal powders. Thermoelectric property measurement demonstrates that alloying Se increases the carrier concentration, leading to much-improved power factor in Se-substituted Cu5FeS4, for example, 0.84 mW m−1 K−2 at 726 K for Cu5FeS3.6Se0.4; low lattice thermal conductivity is also achieved, due to intrinsic structural complexity, distorted crystal structure, and existing twin boundaries and point defects. As a result, a maximum zT of 0.75 is attained for Cu5FeS3.6Se0.4 at 726 K, which is about 23% higher than that of Cu5FeS4 and compares favorably to that of reported Cu5FeS4-based materials. In addition, the Cu5FeS4−xSex samples containing twin boundaries also obtain improved hardness compared to the ones fabricated by melting-annealing or ball milling. This work demonstrates an effective twin engineering-composition tuning strategy toward enhanced thermoelectric and mechanical properties of Cu5FeS4-based materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104592-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. L. Shi, J. Zou, Z. G. Chen, Chem. Rev. 2020, 120, 7399; b) J. He, T. M. Tritt, Science 2017, 357, eaak9997.
- 2a) X. Y. Zhou, Y. C. Yan, X. Lu, H. T. Zhu, X. D. Han, G. Chen, Z. F. Ren, Mater. Today 2018, 21, 974; b) G. Han, Z. G. Chen, J. Drennan, J. Zou, Small 2014, 10, 2747.
- 3G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
- 4a) Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, G. J. Snyder, Nature 2011, 473, 66; b) J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554; c) H. Wu, X. Lu, G. Y. Wang, K. L. Peng, B. Zhang, Y. J. Chen, X. N. Gong, X. D. Tang, X. M. Zhang, Z. Z. Feng, G. Han, Y. S. Zhang, X. Y. Zhou, Nano Energy 2020, 76, 105084.
- 5a) K. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414; b) S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science 2015, 348, 109; c) X. M. Yan, S. K. Zheng, Z. Z. Zhou, H. Wu, B. Zhang, Y. L. Huang, X. Lu, G. Han, G. Y. Wang, X. Y. Zhou, Nano Energy 2021, 84, 105879; d) Q. H. Xiong, D. D. Xie, H. Wang, Y. Q. Wei, G. W. Wang, G. Y. Wang, H. J. Liao, X. Y. Zhou, X. Lu, Chem. Eng. J. 2021, 422, 129985; e) H. Wu, X. Gong, Y. Peng, L. Zhang, B. Zhang, K. Peng, J. Liu, G. Han, A. Wang, Y. Chai, M. He, H. Gu, E. Guilmeau, G. Wang, X. Lu, X. Zhou, Sci. China Mater. 2021, 64, 1507; f) Y. Chen, J. Chen, B. Zhang, M. L. Yang, X. F. Liu, H. Y. Wang, L. Yang, G. Y. Wang, G. Han, X. Y. Zhou, J. Mater. Sci. Technol. 2021, 78, 121; g) L. S. Huang, J. Z. Lu, D. W. Ma, C. M. Ma, B. Zhang, H. Y. Wang, G. Y. Wang, D. H. Gregory, X. Y. Zhou, G. Han, J. Mater. Chem. A 2020, 8, 1394.
- 6a) L. D. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373; b) Y. He, T. Day, T. S. Zhang, H. L. Liu, X. Shi, L. D. Chen, G. J. Snyder, Adv. Mater. 2014, 26, 3974; c) X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Y. Zhou, C. Uher, Adv. Energy Mater. 2013, 3, 342; d) K. L. Peng, X. Lu, H. Zhan, S. Hui, X. D. Tang, G. W. Wang, J. Y. Dai, C. Uher, G. Y. Wang, X. Y. Zhou, Energy Environ. Sci. 2016, 9, 454.
- 7P. F. Qiu, T. S. Zhang, Y. T. Qiu, X. Shi, L. D. Chen, Energy Environ. Sci. 2014, 7, 4000.
- 8V. P. Kumar, T. Barbier, P. Lemoine, B. Raveau, V. Nassif, E. Guilmeau, Dalton Trans. 2017, 46, 2174.
- 9a) A. J. Zhang, X. C. Shen, Z. Zhang, X. Lu, W. Yao, J. Y. Dai, D. D. Xie, L. J. Guo, G. Y. Wang, X. Y. Zhou, J. Mater. Chem. C 2017, 5, 301; b) S. O. J. Long, A. V. Powell, P. Vaqueiro, S. Hull, Chem. Mater. 2018, 30, 456.
- 10a) G. Guelou, A. V. Powell, P. Vaqueiro, J. Mater. Chem. C 2015, 3, 10624; b) A. O. Moghaddam, A. Shokuhfar, A. Cabot, J. Alloys Compd. 2018, 750, 1; c) A. O. Moghaddam, A. Shokuhfar, P. Guardia, Y. Zhang, A. Cabot, J. Alloys Compd. 2019, 773, 1064; d) L. Guo, B. Zhang, H. Zhu, H. Wu, Y. Yan, X. Gong, X. Lu, G. Han, G. Wang, X. Zhou, J. Mater. Chem. C 2020, 8, 17222.
- 11A. J. Zhang, B. Zhang, W. Lu, D. D. Xie, H. X. Ou, X. D. Han, J. Y. Dai, X. Lu, G. Han, G. Y. Wang, X. Y. Zhou, Adv. Funct. Mater. 2018, 28, 1705117.
- 12B. Zhang, X. W. Zhao, T. R. Dong, A. J. Zhang, X. Zhang, G. Han, X. Y. Zhou, Nanomaterials 2020, 10, 4.
- 13H. Wu, K. Peng, B. Zhang, X. N. Gong, Z. Z. Feng, X. M. Zhang, M. Xi, X. M. Yan, Y. S. Zhang, G. Y. Wang, X. Lu, X. Y. Zhou, Mater. Today Phys. 2020, 14, 100221.
- 14K. Luo, Y. Zhang, D. L. Yu, B. Z. Li, W. T. Hu, Y. Liu, Y. F. Gao, B. Wen, A. M. Nie, Z. S. Zhao, B. Xu, X. F. Zhou, Y. J. Tian, J. L. He, Sci. China-Mater. 2019, 62, 1169.
- 15a) J. W. Xiao, H. Z. Yang, X. Z. Wu, F. Younus, P. Li, B. Wen, X. Y. Zhang, Y. B. Wang, Y. J. Tian, Sci. Adv. 2018, 4, eaat8195; b) Q. Huang, D. L. Yu, B. Xu, W. T. Hu, Y. M. Ma, Y. B. Wang, Z. S. Zhao, B. Wen, J. L. He, Z. Y. Liu, Y. J. Tian, Nature 2014, 510, 250.
- 16J. Farges, M. F. Deferaudy, B. Raoult, G. Torchet, Acta Crystallogr., Sect. A: Found. Adv. 1982, 38, 656.
- 17L. D. Marks, Rep. Prog. Phys. 1994, 57, 603.
- 18a) A. Howie, L. D. Marks, Philos. Mag. A 1984, 49, 95; b) J. B. Wu, L. Qi, H. J. You, A. Gross, J. Li, H. Yang, J. Am. Chem. Soc. 2012, 134, 11880; c) L. Deng, X. L. Liu, X. M. Zhang, L. Wang, W. Li, M. K. Song, J. F. Tang, H. Q. Deng, S. F. Xiao, W. Y. Hu, Phys. Chem. Chem. Phys. 2019, 21, 4802; d) L. X. Peng, R. P. Van Duyne, L. D. Marks, J. Phys. Chem. Lett. 2015, 6, 1930.
- 19D. Pohl, U. Wiesenhutter, E. Mohn, L. Schultz, B. Rellinghaus, Nano Lett. 2014, 14, 1776.
- 20Q. P. Wei, L. Ma, J. Ye, Z. M. Yu, Trans. Nonferrous Met. Soc. China 2015, 25, 1587.
- 21S. Lee, S. Ghosh, C. E. Hoyer, H. Liu, X. Li, V. C. Holmberg, Chem. Mater. 2021, 33, 1821.
- 22K. P. Zhao, A. B. Blichfeld, H. Y. Chen, Q. F. Song, T. S. Zhang, C. X. Zhu, D. D. Ren, R. Hanus, P. F. Qiu, B. B. Iversen, F. F. Xu, G. J. Snyder, X. Shi, L. D. Chen, Chem. Mater. 2017, 29, 6367.
- 23M. Singh, P. Dwivedi, D. Mott, K. Higashimine, M. Ohta, H. Miwa, T. Akatsuka, S. Maenosono, Ind. Eng. Chem. Res. 2019, 58, 3688.
- 24S. D. Kang, G. J. Snyder, 2017, arXiv: 1710.06896, https://arxiv.org/abs/1710.06896.
- 25a) R. Gaspari, G. Della Valle, S. Ghosh, I. Kriegel, F. Scotognella, A. Cavalli, L. Manna, Nano Lett. 2017, 17, 7691; b) S. Ghosh, T. Avellini, A. Petrelli, I. Kriegel, R. Gaspari, G. Almeida, G. Bertoni, A. Cavalli, F. Scotognella, T. Pellegrino, L. Manna, Chem. Mater. 2016, 28, 4848.
- 26J. Bardeen, W. Shockley, Phys. Rev. 1950, 80, 72.
- 27Y. J. Chen, B. Zhang, Y. S. Zhang, H. Wu, K. L. Peng, H. Q. Yang, Q. Zhang, X. P. Liu, Y. S. Chai, X. Lu, G. Y. Wang, Z. Zhang, J. He, X. D. Han, X. Y. Zhou, Adv. Sci. 2021, 8, 2002051.
- 28Y. J. Tian, B. Xu, Z. S. Zhao, Int. J. Refract. Met. Hard Mater. 2012, 33, 93.
- 29G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
- 30G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 31J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 32A. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1.