Polyphenylene Sulfide-Based Solid-State Separator for Limited Li Metal Battery
Corresponding Author
Haitao Zhou
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChongchen Yu
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorHongquan Gao
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorCorresponding Author
Jian-Chun Wu
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDong Hou
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorMenghao Liu
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorMinghui Zhang
Amprius (Wuxi) Co., Ltd., Wuxi, Jiangsu Province, 214187 P. R. China
Search for more papers by this authorZifu Xu
Amprius (Wuxi) Co., Ltd., Wuxi, Jiangsu Province, 214187 P. R. China
Search for more papers by this authorJianhong Yang
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorCorresponding Author
De Chen
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, N-7491 Norway
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haitao Zhou
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChongchen Yu
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorHongquan Gao
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorCorresponding Author
Jian-Chun Wu
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDong Hou
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorMenghao Liu
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorMinghui Zhang
Amprius (Wuxi) Co., Ltd., Wuxi, Jiangsu Province, 214187 P. R. China
Search for more papers by this authorZifu Xu
Amprius (Wuxi) Co., Ltd., Wuxi, Jiangsu Province, 214187 P. R. China
Search for more papers by this authorJianhong Yang
School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013 P. R. China
Search for more papers by this authorCorresponding Author
De Chen
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, N-7491 Norway
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The urgent need for high energy batteries is pushing the battery studies toward the Li metal and solid-state direction, and the most central question is finding proper solid-state electrolyte (SSE). So far, the recently studied electrolytes have obvious advantages and fatal weaknesses, resulting in indecisive plans for industrial production. In this work, a thin and dense lithiated polyphenylene sulfide-based solid state separator (PPS-SSS) prepared by a solvent-free process in pilot stage is proposed. Moreover, the PPS surface is functionalized to immobilize the anions, increasing the Li+ transference number to 0.8−0.9, and widening the electrochemical potential window (EPW > 5.1 V). At 25 °C, the PPS-SSS exhibits high intrinsic Li+ diffusion coefficient and ionic conductivity (>10−4 S cm−1), and Li+ transport rectifying effect, resulting in homogenous Li-plating on Cu at 2 mA cm−2 density. Based on the limited Li-plated Cu anode or anode-free Cu, high loadings cathode and high voltage, the Li-metal batteries (LMBs) with polyethylene (PE) protected PPS-SSSs deliver high energy and power densities (>1000 Wh L−1 and 900 W L−1) with >200 cycling life and high safety, exceeding those of state-of-the-art Li-ion batteries. The results promote the Li metal battery toward practicality.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202104365-sup-0001-SuppMat.pdf5.9 MB | Supporting Information |
smll202104365-sup-0002-MovieS1.mp413.1 MB | Supplemental Movie 1 |
smll202104365-sup-0003-MovieS2.mp414.9 MB | Supplemental Movie 2 |
smll202104365-sup-0004-MovieS3.mp414.4 MB | Supplemental Movie 3 |
smll202104365-sup-0005-MovieS4.mp47.3 MB | Supplemental Movie 4 |
smll202104365-sup-0006-MovieS5.mp44.4 MB | Supplemental Movie 5 |
smll202104365-sup-0007-MovieS6.mp43.4 MB | Supplemental Movie 6 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
- 2Y. Sun, N. Liu, Y. Cui, Nat. Energy 2016, 1, 16071.
- 3J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
- 4S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Chem 2019, 5, 753.
- 5S. Choudhury, S. Stalin, D. Vu, A. Warren, Y. Deng, P. Biswal, L. A. Archer, Nat. Commun. 2019, 10, 4398.
- 6X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572.
- 7J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.-Q. Chen, J. Qin, Y. Cui, Nat. Nanotechnol. 2019, 14, 705.
- 8F. Yuan, H.-Z. Chen, H.-Y. Yang, H.-Y. Li, M. Wang, Mater. Chem. Phys. 2005, 89, 390.
- 9X. Yu, L. Wang, J. Ma, X. Sun, X. Zhou, G. Cui, Adv. Energy Mater. 2020, 10, 1903939.
- 10T. Uma, T. Mahalingam, U. Stimming, Mater. Chem. Phys. 2004, 85, 131.
- 11N. P. Young, D. Devaux, R. Khurana, G. W. Coates, N. P. Balsara, Solid State Ionics 2014, 263, 87.
- 12P. Zhang, M. Li, B. Yang, Y. Fang, X. Jiang, G. M. Veith, X.-G. Sun, S. Dai, Adv. Mater. 2015, 27, 8088.
- 13S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park, J. Kim, D. Lee, K. Kang, Nat. Nanotechnol. 2021, 16, 77.
- 14H. Porthault, C. Calberg, J. Amiran, S. Martin, C. Páez, N. Job, B. Heinrichs, D. Liquet, R. Salot, J. Power Sources 2021, 482, 229055.
- 15J. Liu, J. Qin, Y. Mo, S. Wang, D. Han, M. Xiao, Y. Meng, J. Electrochem. Soc. 2019, 166, A1644.
- 16M. A. Zimmerman, A. B. Gavrilov, T. Liu, USA Patent US2020144620 (A1), 2020.
- 17C. M. Burba, R. Frech, B. Grady, Electrochim. Acta 2007, 53, 1548.
- 18a) D. Lian, R. Zhang, J. Lu, J. Dai, High Perform. Polym. 2017, 30, 328; b) R. M. Black, C. F. List, R. J. Wells, J. Appl. Chem. 1967, 17, 269.
- 19A. P. Gies, J. F. Geibel, D. M. Hercules, Macromolecules 2010, 43, 943.
- 20H. Zhou, M. Liu, H. Gao, D. Hou, C. Yu, C. Liu, D. Zhang, J.-C. Wu, J. Yang, D. Chen, J. Power Sources 2020, 473, 228553.
- 21J. J. T. Edmonds, J. H. W. Hill, US3354129 Patent, 1967.
- 22A. g. Muñoz, J. B. Bessone, Corros. Sci. 1999, 41, 1447.
- 23F. Zhu, H. Bao, X. Wu, Y. Tao, C. Qin, Z. Su, Z. Kang, ACS Appl. Mater. Interfaces 2019, 11, 43206.
- 24a) Z. Liu, Q. Xu, S. Jin, S. Wang, G. Xu, M. Zhu, Int. J. Hydrogen Energy 2013, 38, 16722; b) S.-Y. Li, Chin. J. Spectrosc. Lab. 2004, 21, 1167.
- 25K. Yoshino, T. Takiguchi, S. Hayashi, D. H. Park, R.-i. Sugimoto, Jpn. J. Appl. Phys. 1986, 25, 881.
- 26B. J. Tabor, E. P. Magré, J. Boon, Eur. Polym. J. 1971, 7, 1127.
- 27Z. Stoeva, I. Martin-Litas, E. Staunton, Y. G. Andreev, P. G. Bruce, J. Am. Chem. Soc. 2003, 125, 4619.
- 28P.-X. Zhang, Y.-G. Wang, Y.-Q. Huang, T. Zhang, G.-S. Wu, J. Li, Catal. Today 2011, 165, 80.
- 29X. Liang, L. Wang, Y. Jiang, J. Wang, H. Luo, C. Liu, J. Feng, Chem. Mater. 2015, 27, 5503.
- 30P. Louette, F. Bodino, J.-J. Pireaux, Surf. Sci. Spectra 2005, 12, 100.
- 31O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang, Y. Gan, J. Zhang, Y. Xia, C. Liang, W. Zhang, X. Tao, Nano Lett. 2018, 18, 3104.
- 32K. Hayamizu, Y. Matsuda, M. Matsui, N. Imanishi, Solid State Nucl. Magn. Reson. 2015, 70, 21.
- 33K. Hayamizu, S. Seki, Phys. Chem. Chem. Phys. 2017, 19, 23483.
- 34K. Hayamizu, Y. Aihara, Solid State Ionics 2013, 238, 7.
- 35H. Park, K. Jung, M. Nezafati, C.-S. Kim, B. Kang, ACS Appl. Mater. Interfaces 2016, 8, 27814.
- 36A. J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R. T. White, J. Lee, T. Rodgers, R. Petibon, S. Hy, S. J. H. Cheng, J. R. Dahn, Nat. Energy 2020, 5, 693.
- 37W. C. West, J. F. Whitacre, J. R. Lim, J. Power Sources 2004, 126, 134.
- 38X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun, N. Holmes, H. Duan, S. Mukherjee, K. Adair, C. Zhao, J. Liang, W. Li, J. Li, Y. Liu, H. Huang, L. Zhang, S. Lu, Q. Lu, R. Li, C. V. Singh, X. Sun, Energy Environ. Sci. 2020, 13, 1318.
- 39L. Chen, W. Li, L.-Z. Fan, C.-W. Nan, Q. Zhang, Adv. Funct. Mater. 2019, 29, 1901047.
- 40J. Evans, C. A. Vincent, P. G. Bruce, Polymer 1987, 28, 2324.
- 41R. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill, J. R. Dahn, Nat. Energy 2019, 4, 683.
- 42S. Caines, F. Khan, J. Shirokoff, J. Loss Prev. Process Ind. 2013, 26, 1466.
- 43A. S. Rahate, K. R. Nemade, S. A. Waghuley, Rev. Chem. Eng. 2013, 29, 471.
- 44Q. Wu, J. P. Zheng, M. Hendrickson, E. J. Plichta, MRS Adv. 2019, 4, 857.
- 45a) J.-W. Lee, A. M. Soomro, M. Waqas, M. A. U. Khalid, K. H. Choi, Int. J. Energy Res. 2020, 44, 7035; b) A. Manzoor Soomro, J.-W. Lee, M. Waqas, Y. S. Kim, M. Ali, M. A. U. Khalid, K. H. Choi, J. Electrochem. Soc. 2020, 167, 160507.
- 46P. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Energy Environ. Sci. 2016, 9, 3221.
- 47C. Wang, A. Wang, L. Ren, X. Guan, D. Wang, A. Dong, C. Zhang, G. Li, J. Luo, Adv. Funct. Mater. 2019, 29, 1905940.
- 48S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao, H. Zhou, Joule 2018, 2, 2117.
- 49Y. Xu, L. Gao, L. Shen, Q. Liu, Y. Zhu, Q. Liu, L. Li, X. Kong, Y. Lu, H. B. Wu, Matter 2020, 3, 1685.
- 50E. J. Berg, C. Villevieille, D. Streich, S. Trabesinger, P. Novák, J. Electrochem. Soc. 2015, 162, A2468.
- 51J.-N. Chazalviel, Phys. Rev. A 1990, 42, 7355.
- 52A. Kushima, K. P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M. Z. Bazant, J. Li, Nano Energy 2017, 32, 271.
- 53a) J. Zhang, J. Zhao, L. Yue, Q. Wang, J. Chai, Z. Liu, X. Zhou, H. Li, Y. Guo, G. Cui, L. Chen, Adv. Energy Mater. 2015, 5, 1501082; b) R. Fan, C. Liu, K. He, S. Ho-Sum Cheng, D. Chen, C. Liao, R. K. Y. Li, J. Tang, Z. Lu, ACS Appl. Mater. Interfaces 2020, 12, 7222.
- 54M. Liu, Z. Cheng, K. Qian, T. Verhallen, C. Wang, M. Wagemaker, Chem. Mater. 2019, 31, 4564.
- 55C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551.
- 56a) G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169; b) G. Kresse, J. Furthmuller, Comp. Mater. Sci. 1996, 6, 15.
- 57J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982.
- 58V. Sethuraman, S. Mogurampelly, V. Ganesan, Soft Matter 2017, 13, 7793.
- 59V. Wang, N. Xu, J. Liu, G. Tang, W. Geng, VASPKIT: A User-friendly Interface Facilitating High-throughput Computing and Analysis Using VASP Code, 2019.
- 60a) B. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901; b) G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978.
- 61S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 62L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, J. Comput. Chem. 2009, 30, 2157.
- 63a) J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15; b) J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103.