Lithium Storage Performance Boosted via Delocalizing Charge in ZnxCo1−xPS3/CoS2 of 2D/3D Heterostructure
Hou-Yang Zhong
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorXian Lu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorYu Zhong
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorYi Zhao
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorXin-Ming Liu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorDan-Hong Cheng
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorXiao-Ying Huang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Search for more papers by this authorCorresponding Author
Ke-Zhao Du
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiao-Hui Wu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHou-Yang Zhong
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorXian Lu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorYu Zhong
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorYi Zhao
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorXin-Ming Liu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorDan-Hong Cheng
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
Search for more papers by this authorXiao-Ying Huang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Search for more papers by this authorCorresponding Author
Ke-Zhao Du
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiao-Hui Wu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
A promising anode material consisting of bimetallic thiophosphate ZnxCo1−xPS3 and CoS2 with 2D/3D heterostructure is designed and prepared by an effective chemical transformation. Density functional theory calculations illustrate that the Zn2+ can effectively modulate the electrical ordering of ZnxCo1−xPS3 on the nanoscale: the reduced charge distribution emerging around the Zn ions can enhance the local built-in electric field, which will accelerate the ions migration rate by Coulomb forces and provide tempting opportunities for manipulating Li+ storage behavior. Moreover, the merits of the large planar size enable ZnxCo1–xPS3 to provide abundant anchoring sites for metallic CoS2 nanocubes, generating a 2D/3D heterostructure with a strong electric field. The resultant ZnxCo1−xPS3/CoS2 can offer the combined advantages of bimetallic alloying and heterostructure in lithium storage applications, leading to outstanding performance as an anode material for lithium-ion batteries. Consequently, a high capacity of 794 mA h g−1 can be retained after 100 cycles at 0.2 A g−1. Even at 3.0 A g−1, a satisfactory capacity of 465 mA h g−1 can be delivered. The appealing alloying-heterostructure and electrochemical performance of this bimetallic thiophosphate demonstrate its great promise for applications in practical rechargeable batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104295-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J.-M. Tarascon, M. Armand, Nature 2001, 414, 359.
- 2B. Scrosati, Electrochim. Acta 2000, 45, 2461.
- 3Z.-Q. Lin, J. Xie, B.-W. Zhang, J.-W. Li, J. Weng, R.-B. Song, X. Huang, H. Zhang, H. Li, Y. Liu, Z. J. Xu, W. Huang, Q. Zhang, Nano Energy 2017, 41, 117.
- 4Y. F. Li, Y. H. Shi, S. G. Wang, J. H. Liu, J. Lin, Y. Xia, X. L. Wu, C. Y. Fan, J. P. Zhang, H. M. Xie, H. Z. Sun, Z. M. Su, Adv. Energy Mater. 2019, 9, 1803690.
- 5Y.-E. Huang, W. Lin, C. Shi, L. Li, K. Fan, X.-Y. Huang, X. Wu, K.-Z. Du, J. Power Sources 2021, 494, 229712.
- 6Z.-Z. Luo, Y. Zhang, C. Zhang, H. Tan, Z. Li, A. Abutaha, X.-L. Wu, Q. Xiong, K. A. Khor, K. Hippalgaonkar, J. Xu, H. H. Hng, Q. Yan, Adv. Energy Mater. 2017, 7, 1601285.
- 7Q. Liang, Y. Zheng, C. Du, Y. Luo, J. Zhang, B. Li, Y. Zong, Q. Yan, Small Methods 2017, 1, 1700304.
- 8Y. Feng, M. Xu, T. He, B. Chen, F. Gu, L. Zu, R. Meng, J. Yang, Adv. Mater. 2021, 33, 2007262.
- 9L. Nie, Y. Zhang, K. Ye, J. Han, Y. Wang, G. Rakesh, Y. Li, R. Xu, Q. Yan, Q. Zhang, J. Mater. Chem. A 2015, 3, 19410.
- 10P. He, X.-Y. Yu, X. Lou, Angew. Chem., Int. Ed. 2017, 56, 3897.
- 11Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.-S. Huang, L. Xie, ACS Nano 2013, 7, 4610.
- 12Y. Guo, L. Gan, C. Shang, E. Wang, J. Wang, Adv. Funct. Mater. 2017, 27, 1602699.
- 13G. Kaur, R. K. Rai, D. Tyagi, X. Yao, P.-Z. Li, X.-C. Yang, Y. Zhao, Q. Xu, S. K. Singh, J. Mater. Chem. A 2016, 4, 14932.
- 14Z. Pan, Y. Jiang, P. Yang, Z. Wu, W. Tian, L. Liu, Y. Song, Q. Gu, D. Sun, L. Hu, ACS Nano 2018, 12, 2968.
- 15C.-Y. Fan, X.-H. Zhang, Y.-H. Shi, H.-Y. Xu, J.-P. Zhang, X.-L. Wu, J. Mater. Chem. A 2019, 7, 1529.
- 16S. P. Sibley, A. H. Francis, E. Lifshitz, J. Phys. Chem. 1994, 98, 5089.
- 17P. Fuentealba, C. Olea, H. Aguilar-Bolados, N. Audebrand, R. C. d. Santana, C. Doerenkamp, H. Eckert, C. J. Magon, E. Spodine, Phys. Chem. Chem. Phys. 2020, 22, 8315.
- 18Q. Liang, Y. Zheng, C. Du, Y. Luo, J. Zhao, H. Ren, J. Xu, Q. Yan, ACS Nano 2018, 12, 12902.
- 19P. Lacroix, J. P. Audière, R. Clément, J. Chem. Soc., Chem. Commun. 1989, 536.
10.1039/C39890000536 Google Scholar
- 20Y. Liu, T. Zhou, Yangzheng, Z. He, C. Xiao, W. Pang, W. Tong, Y. Zou, B. Pan, Z. Guo, Y. Xie, ACS Nano 2017, 11, 8519.
- 21M. Wang, K. Tang, Dalton Trans. 2019, 48, 3819.
- 22E. Edison, A. Chaturvedi, H. Ren, S. Sreejith, C. T. Lim, S. Madhavi, ACS Appl. Energy Mater. 2018, 1, 5772.
- 23Y. V. Kuz'minskii, B. M. Voronin, I. M. Petrushina, N. N. Redin, G. P. Prikhodko, J. Power Sources 1995, 55, 1.
- 24C. C. Mayorga-Martinez, Z. Sofer, D. Sedmidubský, Š. Huber, A. Y. S. Eng, M. Pumera, ACS Appl. Mater. Interfaces 2017, 9, 12563.
- 25D. Rakov, Y. Li, S. Niu, P. Xu, J. Alloys Compd. 2018, 769, 532.
- 26B. Song, K. Li, Y. Yin, T. Wu, L. Dang, M. Cabán-Acevedo, J. Han, T. Gao, X. Wang, Z. Zhang, J. R. Schmidt, P. Xu, S. Jin, ACS Catal. 2017, 7, 8549.
- 27K. Li, D. Rakov, W. Zhang, P. Xu, Chem. Commun. 2017, 53, 8199.
- 28M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding, S. Jin, J. Am. Chem. Soc. 2014, 136, 10053.
- 29L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, Y. Yan, Microporous Mesoporous Mater. 2003, 58, 105.
- 30Q. Gui, Y. Feng, B. Chen, F. Gu, L. Chen, S. Meng, M. Xu, M. Xia, C. Zhang, J. Yang, Adv. Energy Mater. 2021, 11, 2003553.
- 31S. Jörgens, D. Johrendt, A. Mewis, Z. Anorg. Allg. Chem. 2002, 628, 1765.
- 32N. M. Latiff, C. C. Mayorga-Martinez, B. Khezri, K. Szokolova, Z. Sofer, A. C. Fisher, M. Pumera, FlatChem 2018, 12, 1.
- 33J. Zhang, Y. Liu, C. Sun, P. Xi, S. Peng, D. Gao, D. Xue, ACS Energy Lett. 2018, 3, 779.
- 34A. J. Martinolich, C.-W. Lee, I.-T. Lu, S. C. Bevilacqua, M. B. Preefer, M. Bernardi, A. Schleife, K. A. See, Chem. Mater. 2019, 31, 3652.
- 35C.-T. Kuo, M. Neumann, K. Balamurugan, H. J. Park, S. Kang, H. W. Shiu, J. H. Kang, B. H. Hong, M. Han, T. W. Noh, J.-G. Park, Sci. Rep. 2016, 6, 20904.
- 36M. Zhu, H. Kou, K. Wang, H. Wu, D. Ding, G. Zhou, S. Ding, Mater. Horiz. 2020, 7, 3131.
- 37A. Lebugle, U. Axelsson, R. Nyholm, N. Mårtensson, Phys. Scr. 1981, 23, 825.
- 38J. Xie, S. Liu, G. Cao, T. Zhu, X. Zhao, Nano Energy 2013, 2, 49.
- 39C.-F. Du, K. N. Dinh, Q. Liang, Y. Zheng, Y. Luo, J. Zhang, Q. Yan, Adv. Energy Mater. 2018, 8, 1801127.
- 40J.-Y. Wang, T. Ouyang, N. Li, T. Ma, Z.-Q. Liu, Sci. Bull. 2018, 63, 1130.
- 41Y. Xiao, J.-Y. Hwang, I. Belharouak, Y.-K. Sun, ACS Energy Lett. 2017, 2, 364.
- 42X. Wang, X. Li, Q. Li, H. Li, J. Xu, H. Wang, G. Zhao, L. Lu, X. Lin, H. Li, S. Li, Nano-Micro Lett. 2018, 10, 46.
- 43C.-F. Du, Q. Liang, Q. Yan, J. Energy Chem. 2018, 27, 190.
- 44Q. Wang, L. Jiao, Y. Han, H. Du, W. Peng, Q. Huan, D. Song, Y. Si, Y. Wang, H. Yuan, J. Phys. Chem. C 2011, 115, 8300.
- 45Y. Kim, J. B. Goodenough, J. Phys. Chem. C 2008, 112, 15060.
- 46H. Wang, Z. Chen, Y. Liu, H. Xu, L. Cao, H. Qing, R. Wu, J. Mater. Chem. A 2017, 5, 23221.
- 47R. Dangol, Z. Dai, A. Chaturvedi, Y. Zheng, Y. Zhang, K. N. Dinh, B. Li, Y. Zong, Q. Yan, Nanoscale 2018, 10, 4890.
- 48X. Li, L. Qiao, D. Li, X. Wang, W. Xie, D. He, J. Mater. Chem. A 2013, 1, 6400.
- 49R. Wu, D. Wang, X. Rui, B. Liu, K. Zhou, A. W. K. Law, Q. Yan, J. Wei, Z. Chen, Adv. Mater. 2015, 27, 3038.
- 50H. Kim, W. Choi, J. Yoon, J. H. Um, W. Lee, J. Kim, J. Cabana, W.-S. Yoon, Chem. Rev. 2020, 120, 6934.
- 51Q. Wang, R. Zou, W. Xia, J. Ma, B. Qiu, A. Mahmood, R. Zhao, Y. Yang, D. Xia, Q. Xu, Small 2015, 11, 2511.
- 52Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai, H. Xin, W. Liao, B. Yang, H. Fan, J. Xu, C. Zhu, Energy Storage Mater. 2018, 11, 67.
- 53F. Xiao, X. Yang, D. Wang, H. Wang, D. Y. W. Yu, A. L. Rogach, ACS Appl. Mater. Interfaces 2020, 12, 12809.
- 54Q. Zhong, B. Liu, B. Yang, Y. Li, J. Li, X. Yan, Chin. Chem. Lett. 2021, https://doi.org/10.1016/j.cclet.2021.03.069.
10.1016/j.cclet.2021.03.069 Google Scholar
- 55X. Liu, W. Li, X. Zhao, Y. Liu, C. W. Nan, L. Z. Fan, Adv. Funct. Mater. 2019, 29, 1901510.
- 56V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 57T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
- 58C. Zhang, F. Han, J. Ma, Z. Li, F. Zhang, S. Xu, H. Liu, X. Li, J. Liu, A.-H. Lu, J. Mater. Chem. A 2019, 7, 11771.
- 59C. Zhang, F. Han, F. Wang, Q. Liu, D. Zhou, F. Zhang, S. Xu, C. Fan, X. Li, J. Liu, Energy Storage Mater. 2020, 24, 208.
- 60Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Cell Rep. Phys. Sci. 2021, 2, 100286.
- 61M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter 2002, 14, 2717.
- 62S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. - Cryst. Mater. 2005, 220, 567.
- 63H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 64J. Zhou, X. Liu, L. Zhu, S. Niu, J. Cai, X. Zheng, J. Ye, Y. Lin, L. Zheng, Z. Zhu, D. Sun, Z. Lu, Y. Zang, Y. Wu, J. Xiao, Q. Liu, Y. Zhu, G. Wang, Y. Qian, Chem 2020, 6, 221.