Molybdenum Carbide-PtCu Nanoalloy Heterostructures on MOF-Derived Carbon toward Efficient Hydrogen Evolution
Chengtian Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200 China
Search for more papers by this authorQian Liu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorPengyan Wang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorJiawei Zhu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorDing Chen
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorYue Yang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorYufeng Zhao
Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Zonghua Pu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Shichun Mu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200 China
E-mail: [email protected], [email protected]
Search for more papers by this authorChengtian Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200 China
Search for more papers by this authorQian Liu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorPengyan Wang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorJiawei Zhu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorDing Chen
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorYue Yang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorYufeng Zhao
Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Zonghua Pu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Shichun Mu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
In this study, PtCu-Mo2C heterostructure with charge redistribution is investigated via first-principles theoretical calculations. Mo2C can promote the formation of the electron-rich region of PtCu as an active site, displaying an optimized adsorption behavior toward hydrogen in terms of reduced thermodynamic energy barriers. Owing to the attractive density functional theory calculation results, the PtCu-Mo2C heterostructure is fabricated via carbonization of the unique metal–organic framework (MOF) followed by the replacement reduction reaction for the first time. Owing to its swift kinetics and outstanding specific activity, it exhibits high hydrogen evolution reaction (HER) catalytic activity (26 mV @ 10 mA cm−2) and superior mass activity (1 A mgPt−1 at −0.04 V) in acidic media, which is approximately six times that of commercial Pt/C catalysts. The perception of the intrinsic activity origin of the alloy with an excellent structural support can guide the development of Pt-based and other alloy catalysts in future.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104241-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. A. Turner, Science 2004, 305, 972; b) S. Chu, A. Majumdar, Nature 2012, 488, 294; c) T. E. Mallouk, Nat. Chem. 2013, 5, 362.
- 2a) Z. Pu, J. Zhao, I. S. Amiinu, W. Li, M. Wang, D. He, S. Mu, Energy Environ. Sci. 2019, 12, 952; b) W. Cheng, H. Zhang, D. Luan, X. W. D. Lou, Sci. Adv. 2021, 7, eabg2580; c) J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K.-Y. Wong, Chem. Rev. 2020, 120, 851.
- 3a) M. Wang, H. Yang, J. Shi, Y. Chen, Y. Zhou, L. Wang, S. Di, X. Zhao, J. Zhong, T. Cheng, W. Zhou, Y. Li, Angew. Chem., Int. Ed. Engl. 2021, 60, 5771; b) W. Li, Z. Hu, Z. Zhang, P. Wei, J. Zhang, Z. Pu, J. Zhu, D. He, S. Mu, G. Van Tendeloo, J. Catal. 2019, 375, 164.
- 4C. Zhang, P. Wang, W. Li, Z. Zhang, J. Zhu, Z. Pu, Y. Zhao, S. Mu, J. Mater. Chem. A 2020, 8, 19348.
- 5a) Y. Lee, J. H. Ahn, H.-Y. Park, J. Jung, Y. Jeon, D.-G. Lee, M.-H. Kim, E. Lee, C. Kim, Y. Kwon, H.-W. Lee, J. H. Jang, J. H. Lee, H.-K. Song, Nano Energy 2021, 79, 105363; b) T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W.-B. Hu, X.-W. Du, K. Davey, S.-Z. Qiao, Adv. Mater. 2019, 31, 1807771; c) Y. Lu, Y. Jiang, X. Gao, X. Wang, W. Chen, J. Am. Chem. Soc. 2014, 136, 11687; d) F. Wang, T. Li, Y. Shi, H. Jiao, Catal. Sci. Technol. 2020, 10, 3029; e) J. Huang, J. Wang, R. Xie, Z. Tian, G. Chai, Y. Zhang, F. Lai, G. He, C. Liu, T. Liu, P. R. Shearing, D. J. L. Brett, J. Mater. Chem. A 2020, 8, 19879; f) H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang, Q. Gao, Adv. Funct. Mater. 2016, 26, 5590.
- 6X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Adv. Energy Mater. 2018, 8, 1800935.
- 7V. T. T. Ho, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J. Am. Chem. Soc. 2011, 133, 11716.
- 8a) X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu, W. Zhou, Nano Energy 2019, 62, 127; b) Y. M. Jiang, M. Yang, M. J. Qu, Y. Wang, Z. C. Y. Yang, Q. L. Feng, X. Deng, W. Shen, M. Li, R. X. He, J. Mater. Chem. A 2020, 8, 10409.
- 9C. Meng, T. Ling, T.-Y. Ma, H. Wang, Z. Hu, Y. Zhou, J. Mao, X.-W. Du, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 2017, 29, 1604607.
- 10N. Cheng, M. N. Banis, J. Liu, A. Riese, X. Li, R. Li, S. Ye, S. Knights, X. Sun, Adv. Mater. 2015, 27, 277.
- 11C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma, C. Shi, B. Fan, H. Wang, X. Wang, Adv. Funct. Mater. 2020, 30, 2000693.
- 12J. Gao, F. Sahli, C. Liu, D. Ren, X. Guo, J. Werner, Q. Jeangros, S. M. Zakeeruddin, C. Ballif, M. Grätzel, J. Luo, Joule 2019, 3, 2930.
- 13a) J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Catal. Today 2005, 105, 66; b) R. Levy, M. Boudart, Science 1973, 181, 547.
- 14a) Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He, S. Mu, Nano Energy 2019, 57, 746; b) Z. Kou, W. Zang, W. Pei, L. Zheng, S. Zhou, S. Zhang, L. Zhang, J. Wang, J. Mater. Chem. A 2020, 8, 3071.
- 15a) Y. N. Regmi, G. R. Waetzig, K. D. Duffee, S. M. Schmuecker, J. M. Thode, B. M. Leonard, J. Mater. Chem. A 2015, 3, 10085; b) Y. Qiu, Z. Wen, C. Jiang, X. Wu, R. Si, J. Bao, Q. Zhang, L. Gu, J. Tang, X. Guo, Small 2019, 15, 1900014; c) S. Niu, J. Yang, H. Qi, Y. Su, Z. Wang, J. Qiu, A. Wang, T. Zhang, J. Energy Chem. 2021, 57, 371; d) X. Zhang, M. Zhang, Y. Deng, M. Xu, L. Artiglia, W. Wen, R. Gao, B. Chen, S. Yao, X. Zhang, M. Peng, J. Yan, A. Li, Z. Jiang, X. Gao, S. Cao, C. Yang, A. J. Kropf, J. Shi, J. Xie, M. Bi, J. A. van Bokhoven, Y.-W. Li, X. Wen, M. Flytzani-Stephanopoulos, C. Shi, W. Zhou, D. Ma, Nature 2021, 589, 396; e) L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 2017, 544, 80.
- 16D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, J. G. Chen, Angew. Chem., Int. Ed. Engl. 2010, 49, 9859.
- 17L. Wang, E. G. Mahoney, S. Zhao, B. Yang, J. G. Chen, Chem. Commun. 2016, 52, 3697.
- 18B. M. Tackett, Y. C. Kimmel, J. G. Chen, Int. J. Hydrogen Energy 2016, 41, 5948.
- 19X. Ma, H. Meng, M. Cai, P. K. Shen, J. Am. Chem. Soc. 2012, 134, 1954.
- 20Z. Hu, C. Chen, H. Meng, R. Wang, P. K. Shen, H. Fu, Electrochem. Commun. 2011, 13, 763.
- 21a) W. Zhang, S. Xue, Z. Guo, J. Li, S. Xiao, S. Zhou, Z. Liu, Z. Yang, W. Cai, Nano Select 2021, 2, 600;
10.1002/nano.202000189 Google Scholarb) W. Jia, J. Zhang, Z. Lu, S. Wang, S. Feng, Nanoscale 2020, 12, 3902; c) G. Zhao, K. Rui, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1803291.
- 22S. He, Z.-J. Shao, Y. Shu, Z. Shi, X.-M. Cao, Q. Gao, P. Hu, Y. Tang, Chem. - Eur. J. 2016, 22, 5698.
- 23F. Yang, J. Ye, Q. Yuan, X. Yang, Z. Xie, F. Zhao, Z. Zhou, L. Gu, X. Wang, Adv. Funct. Mater. 2020, 30, 1908235.
- 24F. Gong, M. Liu, S. Ye, L. Gong, G. Zeng, L. Xu, X. Zhang, Y. Zhang, L. Zhou, S. Fang, J. Liu, Adv. Funct. Mater. 2021, 31, 2101715.
- 25a) L. He, W. Zhang, Q. Mo, W. Huang, L. Yang, Q. Gao, Angew. Chem., Int. Ed. Engl. 2020, 59, 3544; b) H. Yang, X. Chen, G. Hu, W. T. Chen, S. J. Bradley, W. Zhang, G. Verma, T. Nann, D. E. Jiang, P. E. Kruger, X. Wang, H. Tian, G. I. N. Waterhouse, S. G. Telfer, S. Ma, Chem. Sci. 2020, 11, 3523.
- 26a) J. Zhu, Y. Guo, F. Liu, H. Xu, L. Gong, W. Shi, D. Chen, P. Wang, Y. Yang, C. Zhang, J. Wu, J. Luo, S. Mu, Angew. Chem,. Int. Ed. Engl. 2021, 60, 12328; b) D. H. Kweon, M. S. Okyay, S.-J. Kim, J.-P. Jeon, H.-J. Noh, N. Park, J. Mahmood, J.-B. Baek, Nat. Commun. 2020, 11, 1278.
- 27D. Chen, T. Liu, P. Wang, J. Zhao, C. Zhang, R. Cheng, W. Li, P. Ji, Z. Pu, S. Mu, ACS Energy Lett. 2020, 5, 2909.
- 28a) C. Sun, S. Liu, D. Liang, K. Shao, Y. Ren, Z. Su, J. Am. Chem. Soc. 2009, 131, 1883; b) H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu, X. W. Lou, Nat. Commun. 2015, 6, 6512.