Elucidating the Strain–Vacancy–Activity Relationship on Structurally Deformed Co@CoO Nanosheets for Aqueous Phase Reforming of Formaldehyde
Kaicheng Qian
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorYong Yan
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore, 138602 Singapore
Search for more papers by this authorShibo Xi
Institute of Chemical and Engineering Science Limited, Agency for Science Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833 Singapore
Search for more papers by this authorTong Wei
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorYihu Dai
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorXiaoqing Yan
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorHisayoshi Kobayashi
Emeritus Professor of Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
Search for more papers by this authorSheng Wang
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Wen Liu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore, 138602 Singapore
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Renhong Li
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
E-mail: [email protected], [email protected]
Search for more papers by this authorKaicheng Qian
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorYong Yan
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore, 138602 Singapore
Search for more papers by this authorShibo Xi
Institute of Chemical and Engineering Science Limited, Agency for Science Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833 Singapore
Search for more papers by this authorTong Wei
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorYihu Dai
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorXiaoqing Yan
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorHisayoshi Kobayashi
Emeritus Professor of Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
Search for more papers by this authorSheng Wang
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Wen Liu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore, 138602 Singapore
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Renhong Li
National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Lattice strain modulation and vacancy engineering are both effective approaches to control the catalytic properties of heterogeneous catalysts. Here, Co@CoO heterointerface catalysts are prepared via the controlled reduction of CoO nanosheets. The experimental quantifications of lattice strain and oxygen vacancy concentration on CoO, as well as the charge transfer across the Co–CoO interface are all linearly correlated to the catalytic activity toward the aqueous phase reforming of formaldehyde to produce hydrogen. Mechanistic investigations by spectroscopic measurements and density functional theory calculations elucidate the bifunctional nature of the oxygen-vacancy-rich Co–CoO interfaces, where the Co and the CoO sites are responsible for CH bond cleavage and OH activation, respectively. Optimal catalytic activity is achieved by the sample reduced at 350 °C, Co@CoO-350 which exhibits the maximum concentration of Co–CoO interfaces, the maximum concentration of oxygen vacancies, a lattice strain of 5.2% in CoO, and the highest aqueous phase formaldehyde reforming turnover frequency of 50.4 h−1 at room temperature. This work provides not only new insights into the strain–vacancy–activity relationship at bifunctional catalytic interfaces, but also a facile synthetic approach to prepare heterostructures with highly tunable catalytic activities.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202102970-sup-0001-SuppMat.pdf26.3 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Lykhach, S. M. Kozlov, T. Skala, A. Tovt, V. Stetsovych, N. Tsud, F. Dvorak, V. Johanek, A. Neitzel, J. Myslivecek, S. Fabris, V. Matolin, K. M. Neyman, J. Libuda, Nat. Mater. 2016, 15, 284.
- 2X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci. 2017, 10, 402.
- 3S. Kattel, P. Liu, J. G. Chen, J. Am. Chem. Soc. 2017, 139, 9739.
- 4J. T. S. Irvine, D. Neagu, M. C. Verbraeken, C. Chatzichristodoulou, C. Graves, M. B. Mogensen, Nat. Energy 2016, 1, 15014.
- 5a) A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science 2008, 321, 1331; b) K. Murata, Y. Mahara, J. Ohyama, Y. Yamamoto, S. Arai, A. Satsuma, Angew. Chem., Int. Ed. 2017, 56, 15993.
- 6X. Mao, A. C. Foucher, T. Montini, E. A. Stach, P. Fornasiero, R. J. Gorte, J. Am. Chem. Soc. 2020, 142, 10373.
- 7a) A. Chen, Q. Su, H. Han, E. Enriquez, Q. Jia, Adv. Mater. 2019, 31, 1803241; b) C. Zhao, Y. Li, W. Zhang, Y. Zheng, X. Lou, B. Yu, J. Chen, Y. Chen, M. Liu, J. Wang, Energy Environ. Sci. 2020, 13, 53.
- 8a) H. Tang, Y. Su, B. Zhang, A. F. Lee, M. A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, B. Qiao, X. Liu, C. Jin, D. Su, J. Wang, T. Zhang, Sci. Adv. 2017, 3, e1700231; b) M. Xu, S. Yao, D. Rao, Y. Niu, N. Liu, M. Peng, P. Zhai, Y. Man, L. Zheng, B. Wang, B. Zhang, D. Ma, M. Wei, J. Am. Chem. Soc. 2018, 140, 11241; c) J. A. Farmer, C. T. Campbell, Science 2010, 329, 933.
- 9J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 2017, 9, 120.
- 10F. Che, S. Ha, J. S. McEwen, Angew. Chem., Int. Ed. 2017, 56, 3557.
- 11a) W. Rong, H. Zou, W. Zang, S. Xi, S. Wei, B. Long, J. Hu, Y. Ji, L. Duan, Angew. Chem., Int. Ed. 2021, 60, 466; b) S. Kattel, W. Yu, X. Yang, B. Yan, Y. Huang, W. Wan, P. Liu, J. G. Chen, Angew. Chem., Int. Ed. 2016, 55, 7968.
- 12a) G. Meng, W. Sun, A. A. Mon, X. Wu, L. Xia, A. Han, Y. Wang, Z. Zhuang, J. Liu, D. Wang, Y. Li, Adv. Mater. 2019, 31, 1903616; b) Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2019, 31, 1806482.
- 13a) P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem. 2010, 2, 454; b) D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850; c) H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, X. Zheng, Nat. Mater. 2016, 15, 48; d) Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, S. Jin, J. Am. Chem. Soc. 2016, 138, 7965.
- 14Y. Sun, K. Xu, Z. Wei, H. Li, T. Zhang, X. Li, W. Cai, J. Ma, H. J. Fan, Y. Li, Adv. Mater. 2018, 30, 1802121.
- 15a) X. Du, J. Huang, J. Zhang, Y. Yan, C. Wu, Y. Hu, C. Yan, T. Lei, W. Chen, C. Fan, J. Xiong, Angew. Chem., Int. Ed. 2019, 58, 4484; b) H. Han, J. Park, S. Y. Nam, K. J. Kim, G. M. Choi, S. S. P. Parkin, H. M. Jang, J. T. S. Irvine, Nat. Commun. 2019, 10, 1471; c) J. Liu, J. Zhang, Chem. Rev. 2020, 120, 2123.
- 16P. Serp, P. Kalck, R. Feurer, Chem. Rev. 2002, 102, 3085.
- 17V. Vargheese, I. T. Ghampson, G.-N. Yun, Y. Kobayashi, A. Takagaki, S. T. Oyama, Appl. Catal., A 2020, 591, 117371.
- 18L. A. Calzada, C. Louis, C. Wan Han, V. Ortalan, R. Zanella, Appl. Catal., B 2020, 264, 118503.
- 19E. del Río, D. Gaona, J. C. Hernández-Garrido, J. J. Calvino, M. G. Basallote, M. J. Fernández-Trujillo, J. A. Pérez-Omil, J. M. Gatica, J. Catal. 2014, 318, 119.
- 20S. P. Jiang, Int. J. Hydrogen Energy 2012, 37, 449.
- 21a) K. J. Kim, H. Han, T. Defferriere, D. Yoon, S. Na, S. J. Kim, A. M. Dayaghi, J. Son, T. S. Oh, H. M. Jang, G. M. Choi, J. Am. Chem. Soc. 2019, 141, 7509; b) G. Tsekouras, D. Neagu, J. T. S. Irvine, Energy Environ. Sci. 2013, 6, 256.
- 22C. Y. Liu, A. J. Bard, Nature 2002, 418, 162.
- 23a) D. Neagu, T. S. Oh, D. N. Miller, H. Menard, S. M. Bukhari, S. R. Gamble, R. J. Gorte, J. M. Vohs, J. T. S. Irvine, Nat. Commun. 2015, 6, 8120; b) D. Neagu, G. Tsekouras, D. N. Miller, H. Menard, J. T. Irvine, Nat. Chem. 2013, 5, 916.
- 24a) J. H. Myung, D. Neagu, D. N. Miller, J. T. Irvine, Nature 2016, 537, 528; b) D. Neagu, E. I. Papaioannou, W. K. W. Ramli, D. N. Miller, B. J. Murdoch, H. Menard, A. Umar, A. J. Barlow, P. J. Cumpson, J. T. S. Irvine, I. S. Metcalfe, Nat. Commun. 2017, 8, 1855.
- 25a) W. Fang, C. Zhang, F. Steinbach, A. Feldhoff, Angew. Chem., Int. Ed. 2017, 56, 7584; b) M. A. Naeem, P. M. Abdala, A. Armutlulu, S. M. Kim, A. Fedorov, C. R. Müller, ACS Catal. 2019, 10, 1923.
- 26a) D. Neagu, V. Kyriakou, I. L. Roiban, M. Aouine, C. Tang, A. Caravaca, K. Kousi, I. Schreur-Piet, I. S. Metcalfe, P. Vernoux, M. C. M. van de Sanden, M. N. Tsampas, ACS Nano 2019, 13, 12996; b) J. Zhang, M.-R. Gao, J.-L. Luo, Chem. Mater. 2020, 32, 5424.
- 27a) Y. Li, W. Zhang, Y. Zheng, J. Chen, B. Yu, Y. Chen, M. Liu, Chem. Soc. Rev. 2017, 46, 6345; b) W. Lee, J. W. Han, Y. Chen, Z. Cai, B. Yildiz, J. Am. Chem. Soc. 2013, 135, 7909.
- 28Y. Qi, H. Zhang, N. Du, D. Yang, J. Mater. Chem. A 2013, 1, 2337.
- 29S. Huang, K. Ruan, Z. Pang, Z. Lv, H. Wu, Z. Shen, L. Cao, X. Li, Solid State Commun. 2007, 141, 150.
- 30a) F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, J. Am. Chem. Soc. 2014, 136, 6826; b) N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, J. Zhu, L. Song, J. Jiang, Y. Xiong, J. Am. Chem. Soc. 2016, 138, 8928.
- 31a) Y. Sun, Q. Liu, S. Gao, H. Cheng, F. Lei, Z. Sun, Y. Jiang, H. Su, S. Wei, Y. Xie, Nat. Commun. 2013, 4, 2899; b) M. Kim, B. Lee, H. Ju, J. Y. Kim, J. Kim, S. W. Lee, Adv. Mater. 2019, 31, 1903316; c) D. Marrocchelli, S. R. Bishop, H. L. Tuller, B. Yildiz, Adv. Funct. Mater. 2012, 22, 1958.
- 32L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv. Mater. 2017, 29, 1606793.
- 33J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 7399.
- 34X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu, H. Chen, F. Li, P. Liu, B. Yu, X. Wang, J. Liu, Y. Chen, M. Liu, Adv. Sci. 2019, 6, 1801898.
- 35a) Q. Ji, Y. Kong, C. Wang, H. Tan, H. Duan, W. Hu, G. Li, Y. Lu, N. Li, Y. Wang, J. Tian, Z. Qi, Z. Sun, F. Hu, W. Yan, ACS Catal. 2020, 10, 5691; b) D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruna, Nat. Mater. 2013, 12, 81; c) H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, J. K. Nørskov, Y. Cui, Science 2016, 354, 1031.
- 36a) G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. Sykes, Science 2012, 335, 1209; b) Y. Guo, S. Mei, K. Yuan, D.-J. Wang, H.-C. Liu, C.-H. Yan, Y.-W. Zhang, ACS Catal. 2018, 8, 6203.
- 37Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, Angew. Chem., Int. Ed. 2017, 56, 7121.
- 38Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao, R. Yang, Z. Li, J. Luo, B. Chi, Z. Jiang, M. Li, S. Mu, S. Liao, J. Zhang, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 2622.
- 39L. E. Heim, N. E. Schlorer, J. H. Choi, M. H. Prechtl, Nat. Commun. 2014, 5, 3621.
- 40L. Miao, Q. Nie, J. Wang, G. Zhang, P. Zhang, Appl. Catal., B 2019, 248, 466.
- 41H. Hu, Z. Jiao, J. Ye, G. Lu, Y. Bi, Nano Energy 2014, 8, 103.
- 42L. Du, K. Qian, X. Zhu, X. Yan, H. Kobayashi, Z. Liu, Y. Lou, R. Li, J. Mater. Chem. A 2019, 7, 8855.
- 43X. Chen, H. Zhang, Z. Xia, S. Zhang, Y. Ma, Catal. Sci. Technol. 2019, 9, 783.
- 44K. Huang, L. Kong, F. Yuan, C. Xie, Appl. Surf. Sci. 2013, 270, 405.
- 45L. Chu, Y. Shen, Appl. Surf. Sci. 2020, 532, 147376.
- 46a) B. Xu, J. Shang, T. Zhu, X. Tang, Atmos. Environ. 2011, 45, 3569; b) V. K. Velisoju, G. B. Peddakasu, N. Gutta, V. Boosa, M. Kandula, K. V. R. Chary, V. Akula, J. Phys. Chem. C 2018, 122, 19670.
- 47Q. Jin, Y. Shen, Y. Cai, L. Chu, Y. Zeng, J. Hazard. Mater. 2020, 381, 120934.
- 48Y. Wang, C. Jiang, Y. Le, B. Cheng, J. Yu, Chem. Eng. J. 2019, 365, 378.
- 49M. A. Peck, M. A. Langell, Chem. Mater. 2012, 24, 4483.
- 50G. R. Möhlmann, J. Raman Spectrosc. 1987, 18, 199.
- 51N. Lebrun, P. Dhamelincourt, C. Focsa, B. Chazallon, J. L. Destombes, D. Prevost, J. Raman Spectrosc. 2003, 34, 459.
- 52K. Qian, L. Du, X. Zhu, S. Liang, S. Chen, H. Kobayashi, X. Yan, M. Xu, Y. Dai, R. Li, J. Mater. Chem. A 2019, 7, 14592.
- 53Y. T. Chang, Y. Yamaguchi, W. H. Miller, H. F. Schaefer, J. Am. Chem. Soc. 1987, 109, 7245.
- 54R. Li, X. Zhu, X. Yan, H. Kobayashi, S. Yoshida, W. Chen, L. Du, K. Qian, B. Wu, S. Zou, L. Lu, W. Yi, Y. Zhou, J. Fan, ACS Catal. 2017, 7, 1478.
- 55N. A. Bauer, E. Hoque, M. Wolf, K. Kleigrewe, T. Hofmann, Free Radical Biol. Med. 2018, 116, 129.
- 56J. Yang, D. Li, Z. Zhang, Q. Li, H. Wang, J. Photochem. Photobiol., A 2000, 137, 197.