Molecular Engineering of Laser-Induced Graphene for Potential-Driven Broad-Spectrum Antimicrobial and Antiviral Applications
Corresponding Author
Meijia Gu
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLibei Huang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorZhaoyu Wang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorWeihua Guo
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorLe Cheng
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorYuncong Yuan
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorZhou Zhou
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorLiu Hu
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorSijie Chen
Ming Wai Lau Center for Reparative Medicine, Karolinska Institute, Sha Tin, Hong Kong, 999077 China
Search for more papers by this authorChao Shen
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Ben Zhong Tang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, Guangdong, 518172 China
Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, Guangdong, 510640 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ruquan Ye
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Meijia Gu
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorLibei Huang
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorZhaoyu Wang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorWeihua Guo
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorLe Cheng
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorYuncong Yuan
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorZhou Zhou
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorLiu Hu
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorSijie Chen
Ming Wai Lau Center for Reparative Medicine, Karolinska Institute, Sha Tin, Hong Kong, 999077 China
Search for more papers by this authorChao Shen
College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Ben Zhong Tang
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077 China
Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, Guangdong, 518172 China
Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, Guangdong, 510640 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Ruquan Ye
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Worldwide, countless deaths have been caused by the coronavirus disease 2019. In addition to the virus variants, an increasing number of fatal fungal infections have been reported, which further exacerbates the scenario. Therefore, the development of porous surfaces with both antiviral and antimicrobial capacities is of urgent need. Here, a cost-effective, nontoxic, and metal-free strategy is reported for the surface engineering of laser-induced graphene (LIG). The authors covalently engineer the surface potential of the LIG from −14 to ≈+35 mV (LIG+), enabling both high-efficiency antimicrobial and antiviral performance under mild conditions. Specifically, several candidate microorganisms of different types, including Escherichia coli, Streptomyces tenebrarius, and Candida albicans, are almost completely inactivated after 10-min solar irradiation. LIG+ also exhibits a strong antiviral effect against human coronaviruses: 99% HCoV-OC43 and 100% HCoV-229E inactivation are achieved after 20-min treatment. Such enhancement may also be observed against other types of pathogens that are heat-sensitive and oppositely charged. Besides, the covalent modification strategy alleviates the leaching problem, and the low cytotoxicity of LIG+ makes it advantageous. This study highlights the synergy of surface potential and photothermal effect in the inactivation of pathogens and it provides a direction for designing porous materials for airborne disease removal and water disinfection.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202102841-sup-0001-SuppMat.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. J. Wiersinga, A. Rhodes, A. C. Cheng, S. J. Peacock, H. C. Prescott, JAMA, J. Am. Med. Assoc. 2020, 324, 782.
- 2J. Bedford, D. Enria, J. Giesecke, D. L. Heymann, C. Ihekweazu, G. Kobinger, H. C. Lane, Z. Memish, M. Oh, A. A. Sall, A. Schuchat, K. Ungchusak, L. H. Wieler, Lancet 2020, 395, 1015.
- 3Y. Y. Zuo, W. E. Uspal, T. Wei, ACS Nano 2020, 14, 16502.
- 4 WHO, Naming the coronavirus disease (COVID-19) and the virus that causes it, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed: April 2020).
- 5R. F. Ceylan, B. Ozkan, E. Mulazimogullari, Eur. J. Health Econ. 2020, 21, 817.
- 6R. F. Ceylan, B. Ozkan, Res. J. Adv. Humanit. 2020, 1, 21.
- 7M. S. Alam, M. J. Ali, A. B. Bhuiyan, M. Solaiman, M. A. Rahman, Am. Econ. Soc. Rev. 2020, 6, 1.
10.46281/aesr.v6i2.844 Google Scholar
- 8G. Vaidyanathan, Nature 2021, https://doi.org/10.1038/d41586-021-00041-y.
- 9L. Huang, M. Gu, Z. Wang, T. W. Tang, Z. Zhu, Y. Yuan, D. Wang, C. Shen, B. Z. Tang, R. Ye, Adv. Funct. Mater. 2021, 31, 2101195.
- 10N. Batool, S. Yoon, S. Imdad, M. Kong, H. Kim, S. Ryu, J. H. Lee, A. K. Chaurasia, K. K. Kim, Small 2021, 17, 2100257.
- 11N. H. L. Leung, D. K. W. Chu, E. Y. C. Shiu, K.-H. Chan, J. J. McDevitt, B. J. P. Hau, H.-L. Yen, Y. Li, D. K. M. Ip, J. S. M. Peiris, W.-H. Seto, G. M. Leung, D. K. Milton, B. J. Cowling, Nat. Med. 2020, 26, 676.
- 12N. Zeng, Z. Li, S. Ng, D. Chen, H. Zhou, Med. Microecol. 2020, 4, 100015.
10.1016/j.medmic.2020.100015 Google Scholar
- 13S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, E. Kostelich, A. B. Gumel, Infect. Dis. Modell. 2020, 5, 293.
- 14S. M. Imani, L. Ladouceur, T. Marshall, R. Maclachlan, L. Soleymani, T. F. Didar, ACS Nano 2020, 14, 12341.
- 15H. A. Aboubakr, T. A. Sharafeldin, S. M. Goyal, Transboundary Emerging Dis. 2021, 68, 296.
- 16S. Raha, R. Mallick, S. Basak, A. K. Duttaroy, Med. Hypotheses 2020, 142, 109814.
- 17Z. U. Iyigundogdu, O. Demir, A. B. Asutay, F. Sahin, Appl. Biochem. Biotechnol. 2017, 181, 1155.
- 18R. K. Campos, J. Jin, G. H. Rafael, M. Zhao, L. Liao, G. Simmons, S. Chu, S. C. Weaver, W. Chiu, Y. Cui, ACS Nano 2020, 14, 14017.
- 19B. L. Carpenter, F. Scholle, H. Sadeghifar, A. J. Francis, J. Boltersdorf, W. W. Weare, D. S. Argyropoulos, P. A. Maggard, R. A. Ghiladi, Biomacromolecules 2015, 16, 2482.
- 20C. C. Tseng, Z. M. Pan, C. H. Chang, Aerosol Sci. Technol. 2016, 50, 199.
- 21H. K. No, N. Y. Park, S. Ho Lee, S. P. Meyers, Int. J. Food Microbiol. 2002, 74, 65.
- 22A. Verlee, S. Mincke, C. V. Stevens, Carbohydr. Polym. 2017, 164, 268.
- 23H. Katas, C. S. Lim, A. Y. H. Nor Azlan, F. Buang, M. F. Mh Busra, Saudi Pharm. J. 2019, 27, 283.
- 24T. Ikeda, H. Hirayama, H. Yamaguchi, S. Tazuke, M. Watanabe, Antimicrob. Agents Chemother. 1986, 30, 132.
- 25L. Zheng, J. Li, M. Yu, W. Jia, S. Duan, D. Cao, X. Ding, B. Yu, X. Zhang, F.-J. Xu, J. Am. Chem. Soc. 2020, 142, 20257.
- 26J. Li, C. Wu, P. K. Chu, M. Gelinsky, Mater. Sci. Eng., R 2020, 140, 100543.
- 27S. R. Deka, A. K. Sharma, P. Kumar, Curr. Top. Med. Chem. 2015, 15, 1179.
- 28J. Lin, X. Chen, C. Chen, J. Hu, C. Zhou, X. Cai, W. Wang, C. Zheng, P. Zhang, J. Cheng, Z. Guo, H. Liu, ACS Appl. Mater. Interfaces 2018, 10, 6124.
- 29L. Gao, X. Liu, M. Xu, G. Sun, S. Xu, T. Zou, L. Wang, F. Wang, J. Da, Y. Wang, Small 2021, 17, 2006815.
- 30D. Pranantyo, C. Raju, Z. Si, X. Xu, K. Pethe, E.-T. Kang, M. B. Chan-Park, Nano Lett. 2021, 21, 899.
- 31Y. Tu, P. Li, J. Sun, J. Jiang, F. Dai, C. Li, Y. Wu, L. Chen, G. Shi, Y. Tan, H. Fang, Adv. Funct. Mater. 2021, 31, 2008018.
- 32J. Xi, L. An, Y. Huang, J. Jiang, Y. Wang, G. Wei, Z. Xu, L. Fan, L. Gao, Small 2021, 17, 2005473.
- 33S. Hou, S. H. Mahadevegowda, D. Lu, K. Zhang, M. B. Chan-Park, H. Duan, Small 2021, 17, 2006357.
- 34M. Vincent, R. E. Duval, P. Hartemann, M. Engels-Deutsch, J. Appl. Microbiol. 2018, 124, 1032.
- 35L. Nan, Y. Liu, M. Lü, K. Yang, J. Mater. Sci.: Mater. Med. 2008, 19, 3057.
- 36K. Sunada, M. Minoshima, K. Hashimoto, J. Hazard. Mater. 2012, 235, 265.
- 37M. Rai, S. D. Deshmukh, A. P. Ingle, I. R. Gupta, M. Galdiero, S. Galdiero, Crit. Rev. Microbiol. 2016, 42, 46.
- 38J. Hodek, V. Zajícová, I. Lovětinská-Šlamborová, I. Stibor, J. Müllerová, J. Weber, BMC Microbiol. 2016, 16, 56.
- 39Z. Lin, Z. Wang, X. Zhang, D. Diao, Nano Res. 2021, 14, 1110.
- 40L. Huang, S. Xu, Z. Wang, K. Xue, J. Su, Y. Song, S. Chen, C. Zhu, B. Z. Tang, R. Ye, ACS Nano 2020, 14, 12045.
- 41L. Huang, L. Ling, J. Su, Y. Song, Z. Wang, B. Z. Tang, P. Westerhoff, R. Ye, ACS Appl. Mater. Interfaces 2020, 12, 51864.
- 42R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han, C. Kittrell, J. M. Tour, Adv. Mater. 2017, 29, 1702211.
- 43J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, Nat. Commun. 2014, 5, 5714.
- 44R. Ye, D. K. James, J. M. Tour, Acc. Chem. Res. 2018, 51, 1609.
- 45L. Huang, J. Su, Y. Song, R. Ye, Nano-Micro Lett. 2020, 12, 157.
- 46S. P. Singh, Y. Li, J. Zhang, J. M. Tour, C. J. Arnusch, ACS Nano 2018, 12, 289.
- 47J. Su, J. J. Zhang, J. Chen, Y. Song, L. Huang, M. Zhu, B. I. Yakobson, B. Z. Tang, R. Ye, Energy Environ. Sci. 2021, 14, 483.
- 48C. Thomsen, S. Reich, Phys. Rev. Lett. 2000, 85, 5214.
- 49Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, J. T. L. Thong, Small 2010, 6, 195.
- 50S. P. Singh, Y. Li, A. Be'er, Y. Oren, J. M. Tour, C. J. Arnusch, ACS Appl. Mater. Interfaces 2017, 9, 18238.
- 51A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401.
- 52D. Sun, P. Li, B. Yang, Y. Xu, J. Huang, Q. Li, RSC Adv. 2016, 6, 105940.
- 53L. Zhu, M. Hong, G. W. Ho, Nano Energy 2015, 11, 28.
- 54M. A. Dar, S. H. Nam, Y. S. Kim, W. B. Kim, J. Solid State Electrochem. 2010, 14, 1719.
- 55M. K. Temgire, S. S. Joshi, Radiat. Phys. Chem. 2004, 71, 1039.
- 56X. Wang, J. Yang, L. Shi, M. Gao, Nanoscale Res. Lett. 2016, 11, 125.
- 57Y. Gerchman, H. Mamane, N. Friedman, M. Mandelboim, J. Photochem. Photobiol., B 2020, 212, 112044.
- 58P. Xu, Q. Zhou, J. Xu, Ann. Hematol. 2020, 99, 1205.
- 59A. Palika, A. Armanious, A. Rahimi, C. Medaglia, M. Gasbarri, S. Handschin, A. Rossi, M. O. Pohl, I. Busnadiego, C. Gübeli, R. B. Anjanappa, S. Bolisetty, M. Peydayesh, S. Stertz, B. G. Hale, C. Tapparel, F. Stellacci, R. Mezzenga, Nat. Nanotechnol. 2021, 16, 918.
- 60S. A. Burt, R. D. Reinders, Lett. Appl. Microbiol. 2003, 36, 162.
- 61D. K. Tiwari, J. Behari, P. Sen, Curr. Sci. 2008, 95, 647.
- 62P. Li, J. Li, C. Wu, Q. Wu, J. Li, Nanotechnology 2005, 16, 1912.
- 63I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 2004, 275, 177.
- 64C. Gunawan, W. Y. Teoh, C. P. Marquis, J. Lifia, R. Amal, Small 2009, 5, 341.
- 65S. M. Noble, B. A. Gianetti, J. N. Witchley, Nat. Rev. Microbiol. 2017, 15, 96.
- 66G. D. Brown, D. W. Denning, N. A. R. Gow, S. M. Levitz, M. G. Netea, T. C. White, Sci. Transl. Med. 2012, 4, 165rv13.
- 67X. Lu, X. Feng, J. R. Werber, C. Chu, I. Zucker, J.-H. Kim, C. O. Osuji, M. Elimelech, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E9793.
- 68A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, J. Nanomater. 2015, 16, 720654.
10.1155/2015/720654 Google Scholar
- 69G. R. Tortella, O. Rubilar, N. Durán, M. C. Diez, M. Martínez, J. Parada, A. B. Seabra, J. Hazard. Mater. 2020, 390, 121974.
- 70A. M. El Badawy, R. G. Silva, B. Morris, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Environ. Sci. Technol. 2011, 45, 283.
- 71T. Schneider, M. Westermann, M. Glei, Arch. Toxicol. 2017, 91, 3517.
- 72Q. Li, Y. Li, T. Min, J. Gong, L. Du, D. L. Phillips, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, R. T. K. Kwok, C. L. Ho, K. Li, J. Wang, B. Z. Tang, Angew. Chem., Int. Ed. 2020, 59, 9470.