Highly Self-Healable Write-Once-Read-Many-Times Devices Based on Polyvinylalcohol-Imidazole Modified Graphene Nanocomposites
Haoqun An
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorYoungjin Kim
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorMingjun Li
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Tae Whan Kim
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorHaoqun An
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorYoungjin Kim
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorMingjun Li
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Tae Whan Kim
Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
Repetitious mechanical stress or external mechanical impact can damage wearable electronic devices, leading to serious degradations in their electrical performances, which limits their applications. Because self-healing would be an excellent solution to the above-mentioned issue, this paper presents a self-healable memory device based on a novel nanocomposite layer consisting of a polyvinyl alcohol matrix and imidazole-modified graphene quantum dots. The device exhibits reliable electrical performance over 600 cycles, and the electrical properties of the device are maintained without any failure under this bending stress. Further, it is confirmed that the damaged device can recover its original electric characteristics after the self-healing process. It is believed that such outstanding results will lead the way to the realization of future wearable electronic systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202102772-sup-0001-SuppMat.pdf1.2 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. M. Tao, Adv. Mater. 2014, 26, 5310.
- 2S. L. P. Tang, Trans. Inst. Meas. Control 2007, 29, 283.
- 3H. Liu, H. Qing, Z. Li, Y. L. Han, M. Lin, H. Yang, A. Lie, T. J. Lu, F. Li, F. Xu, Mater. Sci. Eng., R 2017, 112, 1.
- 4J. I. Munro, V. Raman, Theor. Comput. Sci. 1996, 165, 311.
- 5T. A. Brubaker, J. C. Becker, IEEE Trans. Comput. 1975, c-24, 761.
- 6M. K. Hota, M. K. Bera, B. Kundu, S. C. Kundu, C. K. Maiti, Adv. Funct. Mater. 2012, 22, 4493.
- 7H. An, Y. Ge, M. Li, T. W. Kim, Adv. Electron. Mater. 2020, 7, 2000593.
- 8A.-A. Kanoun, S. Goumri-Said, M. B. Kanoun, Int. J. Energy Res. 2021, 45, 10538.
- 9S. Moller, C. Perlov, W. Jackson, C. Taussig, S. R. Forrest, Nature 2003, 426, 166.
- 10H. An, Y. H. Lee, J. H. Lee, C. Wu, B. M. Koo, T. W. Kim, Sci. Rep. 2020, 10, 5793.
- 11M. A. Mamo, W. S. Machado, W. A. L. van Otterlo, N. J. Coville, I. A. Hümmelgen, Org. Electron. 2010, 11, 1858.
- 12B. Sun, X. Zhang, G. Zhou, P. Li, Y. Zhang, H. Wang, Y. Xia, Y. Zhao, Org. Electron. 2016, 42, 181.
- 13H. L. Park, M. H. Kim, S. H. Lee, Org. Electron. 2020, 87, 105927.
- 14C. H. Bok, C. Wu, T. W. Kim, Appl. Phys. Lett. 2017, 110, 013301.
- 15E. W. Lim, R. Ismail, Electronics 2015, 4, 586.
- 16G. Zhou, B. Sun, A. Zhou, B. Wu, H. Huang, Curr. Appl. Phys. 2017, 17, 235.
- 17Y.-C. Chang, J.-C. Jian, Y. L. Hsu, W.-Y. Huang, S.-J. Young, ACS Appl. Polym. Mater. 2020, 2, 5318.
- 18C. Wu, T. W. Kim, H. Y. Choi, D. B. Strukov, J. J. Yang, Nat. Commun. 2017, 8, 752.
- 19Q. A. Vu, Y. S. Shin, Y. R. Kim, V. L. Nguyen, W. T. Kang, H. Kim, D. H. Luong, I. M. Lee, K. Lee, D.-S. Ko, J. Heo, S. Park, Y. H. Lee, W. J. Yu, Nat. Commun. 2016, 7, 12725.
- 20R. A. John, N. Tiwari, M. I. B. Patdillah, M. R. Kulkarni, N. Tiwari, J. Basu, S. K. Bose, C. J. Y. Ankit, A. Nirmal, S. K. Vishwanath, C. Bartolozzi, A. Basu, N. Mathews, Nat. Commun. 2020, 11, 4030.
- 21J. S. Stevens, S. Coultas, C. Jaye, D. A. Fischerd, S. L. M. Schroeder, Phys. Chem. Chem. Phys. 2020, 22, 4916.
- 22J. S. Stevens, S. J. Byard, C. C. Seaton, G. Sadiq, R. J. Daveya, S. L. M. Schroeder, Phys. Chem. Chem. Phys. 2014, 16, 1150.
- 23J. S. Stevens, S. J. Byard, C. A. Muryn, S. L. M. Schroeder, J. Phys. Chem. B 2010, 114, 13961.
- 24S. Jiang, S. Liu, W. Feng, J. Mech. Behav. Biomed. 2011, 4, 1228.
- 25J. A. Stammen, S. Williams, D. N. Ku, R. E. Guldberg, Biomaterials 2001, 22, 799.
- 26C. Xiao, M. Yang, Carbohydr. Polym. 2006, 64, 37.
- 27P. Song, Z. Xu, Q. Guo, ACS Macro Lett. 2013, 2, 1100.
- 28C. Dong, W. Zheng, L. Wang, W. Zhen, L. Zhao, Mater. Des. 2021, 206, 109770.
- 29C. Bao, Y. Guo, L. Song, Y. Hu, J. Mater. Chem. 2011, 21, 13942.
- 30S. Cui, L. Li, Q. Wang, Compos. Sci. Technol. 2016, 127, 177.
- 31T. Wang, S. Gunasekaran, J. Appl. Polym. Sci. 2006, 101, 3227.
- 32L. Jin, R. Bai, Langmuir 2002, 18, 9765.
- 33J. Wang, C. Gao, Y. Zhang, Y. Wan, Mater. Sci. Eng., C 2010, 30, 214.
- 34M. Kokabi, M. Sirousazar, Z. M. Hassan, Eur. Polym. J. 2007, 43, 773.
- 35E. A. Kamoun, E. S. Kenawy, X. Chen, J. Adv. Res. 2017, 8, 217.
- 36A. V. Mitin, Comput. Methods Math. Phys. 1985, 25, 1.
10.1016/0041-5553(85)90097-7 Google Scholar
- 37M. Schlegel, W. Marquardt, R. Ehrig, U. Nowak, Appl. Numer. Math. 2004, 48, 83.
- 38B. Govoreanu, J. V. Houdt, IEEE Electron. Device Lett. 2008, 29, 177.
- 39M.-F. Hung, Y.-C. Wu, J.-J. Chang, K.-S. Chang-Liao, IEEE Electron. Device Lett. 2013, 34, 75.
- 40N.-C. Su, S. J. Wang, A. Chin, IEEE Electron. Device Lett. 2010, 31, 201.
- 41S. Sakai, M. Takahashi, Materials 2010, 3, 4950.
- 42T.-S. Chen, K.-H. Wu, H. Chung, C.-H. Kao, IEEE Electron. Device Lett. 2004, 25, 205.
- 43C. Y. Tsai, T. H. Lee, C. H. Cheng, A. Chin, H. Wang, Appl. Phys. Lett. 2010, 97, 213504.
- 44C. Y. Ng, T. P. Chen, D. Sreeduth, Q. Chen, L. Ding, A. Du, Thin Solid Films 2006, 504, 25.
- 45Q. B. Tao, P. T. Lai, Microelectron. Reliab. 2012, 52, 2597.
- 46K. S. Seol, S. J. Choi, J.-Y. Choi, E.-J. Jang, B.-K. Kim, S.-J. Park, D.-G. Cha, I.-Y. Song, J.-B. Park, Y. Park, Appl. Phys. Lett. 2006, 89, 083109.
- 47A. Beiser, Concepts of Modern Physics, McGraw-Hill, New York, NY 2003.
- 48B. G. Streetmen, S. K. Banerjee, Solid State Electronic Devices, Pearson Education, Upper Saddle River, NJ 2005.
- 49E. A. Johnson, in Low-Dimensional Semiconductor Structure: Fundamentals and Device Applications, Cambridge University Press, UK 2001.
- 50J. Kang, J. B.-H. Tok , Z. Bao , Nat. Electron. 2019, 2, 144.
- 51T.-P. Huynh, P. Sonar, H. Haick, Adv. Mater. 2017, 29, 1604973.
- 52W. Mai, Q. Yu, C. Han, F. Kang, B. Li, Adv. Funct. Mater. 2020, 30, 1909912.
- 53D. Chen, D. Wang, Y. Yang, Q. Huang, S. Zhu, Z. Zheng, Adv. Energy Mater. 2017, 7, 1700890.
- 54Y. J. Tan, J. Wu, H. Li, B. C. K. Tee, ACS Appl. Mater. Interfaces 2018, 10, 15331.
- 55A. Vidyasagar, K. Handore, K. M. Sureshan, Angew. Chem., Int. Ed. 2011, 50, 8021.
- 56Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, Q. Zhao, Nat. Commun. 2016, 7, 10228.
- 57M. Bag, S. Banerjee, R. Faust, D. Venkataraman, Sol. Energy Mater. Sol. Cells 2016, 145, 418.
- 58M. Khatib, T.-P. Huynh, Y. Deng, Y. D. Horev, W. Saliba, W. Wu, H. Haick, Small 2019, 15, 1803939.
- 59E. Tatsi, G. Fortunato, B. Rigatelli, G. Lyu, S. Turri, R. C. Evans, G. Griffini, ACS Appl. Energy Mater. 2020, 3, 1152.
- 60W. Xu, L.-B. Huang, J. Hao, Nano Energy 2017, 40, 399.
- 61J. Ko, Y.-J. Kim, Y. S. Kim, ACS Appl. Mater. Interfaces 2016, 8, 23854.
- 62J. Rao, N. Liu, Z. Zhang, J. Su, L. Li, L. Xiong, Y. Gao, Nano Energy 2018, 51, 425.