Urchin-Like Fe3Se4 Hierarchitectures: A Novel Pseudocapacitive Sodium-Ion Storage Anode with Prominent Rate and Cycling Properties
Jian Zhang
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Yongchang Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected], [email protected]
Search for more papers by this authorHui Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorYuzhu Song
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorShengdong Sun
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorQiang Li
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorXianran Xing
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Jun Chen
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected], [email protected]
Search for more papers by this authorJian Zhang
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Yongchang Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected], [email protected]
Search for more papers by this authorHui Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorYuzhu Song
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorShengdong Sun
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorQiang Li
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorXianran Xing
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Jun Chen
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Transition metal chalcogenides have received great attention as promising anode candidates for sodium-ion batteries (SIBs). However, the undesirable cyclic life and inferior rate capability still restrict their practical applications. The design of micro–nano hierarchitectures is considered as a possible strategy to facilitate the electrochemical reaction kinetics and strengthen the electrode structure stability upon repeated Na+ insertion/extraction. Herein, urchin-like Fe3Se4 hierarchitectures are successfully prepared and developed as a novel anode material for SIBs. Impressively, the as-prepared urchin-like Fe3Se4 can present an ultrahigh rate capacity of 200.2 mAh g-1 at 30 A g-1 and a prominent capacity retention of 99.9% over 1000 cycles at 1 A g-1, meanwhile, a respectable initial coulombic efficiency of ≈100% is achieved. Through the conjunct study of in situ X-ray diffraction, ex situ X-ray absorption near-edge structure spectroscopy, as well as cyclic voltammetry curves, it is intriguing to reveal that the phase transformation from monoclinic to amorphous structure accompanied by the pseudocapacitive Na+ storage behavior accounts for the superior electrochemical performance. When paired with the Na3V2(PO4)3 cathode materials, the assembled full cell enables high energy density and decent cyclic stability, demonstrating potential practical feasibility of the present urchin-like Fe3Se4 anode.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202000504-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Hu, Q. Liu, S. L. Chou, S. X. Dou, Adv. Mater. 2017, 29, 1700606.
- 2N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
- 3H. Pan, Y. S. Hu, L. Q. Chen, Energy Environ. Sci. 2013, 6, 2338.
- 4D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem., Int. Ed. 2015, 54, 3431.
- 5H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, K. Kang, Adv. Energy Mater. 2016, 6, 1600943.
- 6Y. Liang, W. H. Lai, Z. Miao, S. L. Chou, Small 2018, 14, 1702514.
- 7L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. P. Guo, Energy Environ. Sci. 2018, 11, 2310.
- 8H. Hou, C. E. Banks, M. Jing, Y. Zhang, X. B. Ji, Adv. Mater. 2015, 27, 7861.
- 9S. Wang, L. Xia, L. Yu, L. Zhang, H. H. Wang, X. W. Lou, Adv. Energy Mater. 2016, 6, 1502217.
- 10C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng, L. Huang, L. Zhou, G. Zhang, L. He, L. Q. Mai, Nano Energy 2016, 28, 224.
- 11K. Li, J. Zhang, D. Lin, D. W. Wang, B. Li, W. Lv, S. Sun, Y.-B. He, F. Kang, Q.-H. Yang, L. Zhou, T.-Y. Zhang, Nat. Commun. 2019, 10, 725.
- 12H. Tan, Y. Feng, X. Rui, Y. Yu, S. Huang, Small Methods 2020, 4, 1900563.
- 13Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, Nano Lett. 2016, 16, 3321.
- 14S. Yuan, X. L. Huang, D. L. Ma, H. G. Wang, F. Z. Meng, X. B. Zhang, Adv. Mater. 2014, 26, 2273.
- 15R. Sun, S. Liu, Q. Wei, J. Sheng, S. Zhu, Q. An, L. Q. Mai, Small 2017, 13, 1701744.
- 16K. Zhang, M. Park, L. Zhou, G. H. Lee, W. Li, Y. M. Kang, J. Chen, Adv. Funct. Mater. 2016, 26, 6728.
- 17J. Wang, C. Luo, T. Gao, A. Langrock, A. C. Mignerey, C. S. Wang, Small 2015, 11, 473.
- 18W. Li, S. Hu, X. Luo, Z. Li, X. Sun, M. Li, F. Liu, Y. Yu, Adv. Mater. 2017, 29, 1605820.
- 19Y. C. Liu, N. Zhang, X. Liu, C. Chen, L. Z. Fan, L. F. Jiao, Energy Storage Mater. 2017, 9, 170.
- 20M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S. X. Dou, Adv. Mater. 2017, 29, 1700622.
- 21Y. C. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Adv. Funct. Mater. 2015, 25, 214.
- 22X. Yang, J. Zhang, Z. Wang, H. Wang, C. Zhi, D. Y. Yu, A. L. Rogach, Small 2018, 14, 1702669.
- 23Y. Fang, X. Y. Yu, X. W. Lou, Adv. Mater. 2018, 30, 1706668.
- 24Y. Xiao, J. Y. Hwang, I. Belharouak, Y. K. Sun, ACS Energy Lett. 2017, 2, 364.
- 25C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Adv. Mater. 2016, 28, 7276.
- 26X. Ou, J. Li, F. Zheng, P. Wu, Q. Pan, X. Xiong, C. H. Yang, M. L. Liu, J. Power Sources 2017, 343, 483.
- 27Q. Wang, W. Zhang, C. Guo, Y. Liu, C. Wang, Z. P. Guo, Adv. Funct. Mater. 2017, 27, 1703390.
- 28Y. He, M. Luo, C. Dong, X. Ding, C. Yin, A. Nie, Y. Chen, Y. T. Qian, L. Q. Xu, J. Mater. Chem. A 2019, 7, 3933.
- 29L. Zhou, K. Zhang, J. Sheng, Q. An, Z. Tao, Y. M. Kang, J. Chen, L. Q. Mai, Nano Energy 2017, 35, 281.
- 30X. Wang, D. Chen, Z. Yang, X. Zhang, C. Wang, J. Chen, X. Zhang, M. Q. Xue, Adv. Mater. 2016, 28, 8645.
- 31P. Ge, S. Li, L. Xu, K. Zou, X. Gao, X. Cao, G. Zou, H. Hou, X. B. Ji, Adv. Energy Mater. 2019, 9, 1803035.
- 32B. H. Hou, Y. Y. Wang, D. S. Liu, Z. Y. Gu, X. Feng, H. Fan, T. Zhang, C. Lü, X. L. Wu, Adv. Funct. Mater. 2018, 28, 1805444.
- 33C. H. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. L. Liu, K. Huang, Energy Environ. Sci. 2017, 10, 107.
- 34Y. Li, X. Sun, Z. Cheng, X. Xu, J. Pan, X. Yang, F. Tian, Y. Li, J. Yang, Y. T. Qian, Energy Storage Mater. 2019, 22, 275.
- 35Y. Fang, Z. Chen, L. Xiao, X. P. Ai, Y. L. Cao, H. X. Yang, Small 2018, 14, 1703116.
- 36P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Adv. Funct. Mater. 2018, 28, 1801765.
- 37H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, N. Zhao, Y. Zheng, C. Du, Z. Dai, Q. Y. Yan, J. Xu, Energy Storage Mater. 2018, 10, 48.
- 38Z. Ali, M. Asif, X. Huang, T. Tang, Y. L. Hou, Adv. Mater. 2018, 30, 1802745.
- 39F. Zhao, S. Shen, L. Cheng, L. Ma, J. Zhou, H. Ye, N. Han, T. Wu, Y. Li, J. Lu, Nano Lett. 2017, 17, 4137.
- 40C. An, Y. Yuan, B. Zhang, L. Tang, B. Xiao, Z. He, J. C. Zheng, J. Lu, Adv. Energy Mater. 2019, 9, 1900356.
- 41K. Zhang, Z. Hu, X. Liu, Z. L. Tao, J. Chen, Adv. Mater. 2015, 27, 3305.
- 42X. Wei, C. Tang, Q. An, M. Yan, X. Wang, P. Hu, X. Cai, L. Q. Mai, Nano Res. 2017, 10, 3202.
- 43J. H. Choi, S. K. Park, Y. C. Kang, Small 2019, 15, 1803043.
- 44M. Wan, R. Zeng, K. Chen, G. Liu, W. Chen, L. Wang, N. Zhang, L. Xue, W. Zhang, Y. H. Huang, Energy Storage Mater. 2018, 10, 114.
- 45W. Tian, W. Ma, Z. Feng, F. Tian, H. Li, J. Liu, S. L. Xiong, J. Energy Chem. 2020, 44, 97.
- 46X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu, H. Wang, L. Yang, M. Zhu, Adv. Funct. Mater. 2018, 28, 1707573.
- 47D. M. Zhang, J. H. Jia, C. C. Yang, Q. Jiang, Energy Storage Mater. 2020, 24, 439.
- 48H. Zhang, G. Long, D. Li, R. Sabirianov, H. Zeng, Chem. Mater. 2011, 23, 3769.
- 49G. J. Snyder, T. Caillat, J. P. Fleurial, Phys. Rev. B 2000, 62, 10185.
- 50B. Jing, S. You, Y. Ma, Z. Xing, H. Chen, Y. Dai, C. Zhang, N. Ren, J. Zou, Appl. Catal., B 2019, 244, 465.
- 51Y. R. Liang, W. H. Lai, Z. C. Miao, S. L. Chou, Small 2018, 14, 1702514.
- 52L. Tang, B. Zhang, C. An, H. Li, B. Xiao, J. Li, Z. He, J. C. Zheng, Inorg. Chem. 2019, 58, 8169.
- 53Y. C. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. F. Jiao, J. Chen, L.-Z. Fan, Adv. Funct. Mater. 2020, 30, 1907837.
- 54D. Zuo, S. Song, C. An, L. Tang, Z. He, J. C. Zheng, Nano Energy 2019, 62, 401.
- 55G. Long, H. Zhang, D. Li, R. Sabirianov, Z. Zhang, H. Zeng, Appl. Phys. Lett. 2011, 99, 202103.
- 56S. Zhu, Q. Li, Q. Wei, R. Sun, X. Liu, Q. An, L. Q. Mai, ACS Appl. Mater. Interfaces 2017, 9, 311.
- 57X. Wang, D. Kong, Z. X. Huang, Y. Wang, H. Y. Yang, Small 2017, 13, 1603980.
- 58J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 59T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
- 60P. Ge, C. Zhang, H. Hou, B. Wu, L. Zhou, S. Li, T. Wu, J. Hu, L. Q. Mai, X. B. Ji, Nano Energy 2018, 48, 617.
- 61X. Yang, R. Y. Zhang, J. Zhao, Z. X. Wei, D. X. Wang, X. F. Bie, Y. Gao, F. Du, G. Chen, Adv. Energy Mater. 2018, 8, 1701827.
- 62J. Zhang, X. Zhao, Y. Song, Q. Li, Y. Liu, J. Chen, X. Xing, Energy Storage Mater. 2019, 23, 25.