Imparting Designer Biorecognition Functionality to Metal–Organic Frameworks by a DNA-Mediated Surface Engineering Strategy
Weiyu Ning
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorZhenghan Di
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorYingjie Yu
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorPingmei Zeng
Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorChunzhi Di
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorDaquan Chen
School of Pharmacy, Yantai University, Yantai, 264005 China
Search for more papers by this authorXueqian Kong
Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorGuangjun Nie
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Yuliang Zhao
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Lele Li
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
E-mail: [email protected], [email protected]Search for more papers by this authorWeiyu Ning
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorZhenghan Di
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorYingjie Yu
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794 USA
Search for more papers by this authorPingmei Zeng
Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorChunzhi Di
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorDaquan Chen
School of Pharmacy, Yantai University, Yantai, 264005 China
Search for more papers by this authorXueqian Kong
Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorGuangjun Nie
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Yuliang Zhao
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Lele Li
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Surface functionality is an essential component for processing and application of metal–organic frameworks (MOFs). A simple and cost-effective strategy for DNA-mediated surface engineering of zirconium-based nanoscale MOFs (NMOFs) is presented, capable of endowing them with specific molecular recognition properties and thus expanding their potential for applications in nanotechnology and biotechnology. It is shown that efficient immobilization of functional DNA on NMOFs can be achieved via surface coordination chemistry. With this strategy, it is demonstrated that such porphyrin-based NMOFs can be modified with a DNA aptamer for targeting specific cancer cells. Furthermore, the DNA–NMOFs can facilitate the delivery of therapeutic DNA (e.g., CpG) into cells for efficient recognition of endosomal Toll-like receptor 9 and subsequent enhanced immunostimulatory activity in vitro and in vivo. No apparent toxicity is observed with systemic delivery of the DNA–NMOFs in vivo. Overall, these results suggest that the strategy allows for surface functionalization of MOFs with different functional DNAs, extending the use of these materials to diverse applications in biosensor, bioimaging, and nanomedicine.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201703812-sup-0001-S1.pdf694.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 2H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
- 3H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415.
- 4P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 2010, 9, 172.
- 5C. He, D. Liu, W. Lin, Chem. Rev. 2015, 115, 11079.
- 6P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232.
- 7F.-K. Shieh, S.-C. Wang, C.-I. Yen, C.-C. Wu, S. Dutta, L.-Y. Chou, J. V. Morabito, P. Hu, M.-H. Hsu, K. C.-W. Wu, C.-K. Tsung, J. Am. Chem. Soc. 2015, 137, 4276.
- 8J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, C.-K. Tsung, ACS Nano 2014, 8, 2812.
- 9H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A. M. Nyström, X. Zou, J. Am. Chem. Soc. 2016, 138, 962.
- 10K. Liang, R. Ricco, C. M. Doherty, M. J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A. J. Hill, C. J. Doonan, P. Falcaro, Nat. Commun. 2015, 6, 7240.
- 11V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R. L. Musselman, S. Ma, J. Am. Chem. Soc. 2011, 133, 10382.
- 12M. H. Teplensky, M. Fantham, P. Li, T. C. Wang, J. P. Mehta, L. J. Young, P. Z. Moghadam, J. T. Hupp, O. K. Farha, C. F. Kaminski, D. Fairen-Jimenez, J. Am. Chem. Soc. 2017, 139, 7522.
- 13A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018.
- 14Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li, H.-C. Zhou, Chem. Soc. Rev. 2016, 45, 2327.
- 15J. Park, Q. Jiang, D. Feng, L. Mao, H.-C. Zhou, J. Am. Chem. Soc. 2016, 138, 3518.
- 16K. Lu, C. He, W. Lin, J. Am. Chem. Soc. 2014, 136, 16712.
- 17J. Jiang, Y. Zhao, O. M. Yaghi, J. Am. Chem. Soc. 2016, 138, 3255.
- 18S. M. Cohen, J. Am. Chem. Soc. 2017, 139, 2855.
- 19R. Röder, T. Preiß, P. Hirschle, B. Steinborn, A. Zimpel, M. Höhn, J. O. Rädler, T. Bein, E. Wagner, S. Wuttke, U. Lächelt, J. Am. Chem. Soc. 2017, 139, 2359.
- 20C. Doonan, R. Riccò, K. Liang, D. Bradshaw, P. Falcaro, Acc. Chem. Res. 2017, 50, 1423.
- 21P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2013, 135, 16801.
- 22P. Deria, W. Bury, I. Hod, C. W. Kung, O. Karagiaridi, J. T. Hupp, O. K. Farha, Inorg. Chem. 2015, 54, 2185.
- 23J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2013, 135, 10294.
- 24W. Bury, D. Fairen-Jimenez, M. B. Lalonde, R. Q. Snurr, O. K. Farha, J. T. Hupp, Chem. Mater. 2013, 25, 739.
- 25O. Karagiaridi, W. Bury, A. A. Sarjeant, C. L. Stern, O. K. Farha, J. T. Hupp, Chem. Sci. 2012, 3, 3256.
- 26O. Karagiaridi, M. B. Lalonde, W. Bury, A. A. Sarjeant, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 18790.
- 27S. Takaishi, E. J. DeMarco, M. J. Pellin, O. K. Farha, J. T. Hupp, Chem. Sci. 2013, 4, 1509.
- 28T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688.
- 29M. Kim, J. F. Cahill, Y. X. Su, K. A. Prather, S. M. Cohen, Chem. Sci. 2012, 3, 126.
- 30P. Deria, W. Bury, J. T. Hupp, O. K. Farha, Chem. Commun. 2014, 50, 1965.
- 31C. He, K. Lu, D. Liu, W. Lin, J. Am. Chem. Soc. 2014, 136, 5181.
- 32S. Wang, C. M. McGuirk, M. B. Ross, S. Wang, P. Chen, H. Xing, Y. Liu, C. A. Mirkin, J. Am. Chem. Soc. 2017, 139, 9827.
- 33L. He, M. Brasino, C. Mao, S. Cho, W. Park, A. P. Goodwin, J. N. Cha, Small 2017, 13, 1700504.
- 34Z. Wang, Y. Fu, Z. Kang, X. Liu, N. Chen, Q. Wang, Y. Tu, L. Wang, S. Song, D. Ling, H. Song, X. Kong, C. Fan, J. Am. Chem. Soc. 2017, 139, 15784.
- 35J. H. Lee, M. V. Yigit, D. Mazumdar, Y. Lu, Adv. Drug Delivery Rev. 2010, 62, 592.
- 36S. Soundararajan, W. Chen, E. K. Spicer, N. Courtenay-Luck, D. J. Fernandes, Cancer Res. 2008, 68, 2358.
- 37A. B. Chinen, C. M. Guan, C. A. Mirkin, Angew. Chem., Int. Ed. 2015, 54, 527.
- 38D. M. Klinman, Nat. Rev. Immunol. 2004, 4, 249.
- 39J. Vollmer, A. M. Krieg, Adv. Drug Delivery Rev. 2009, 61, 195.
- 40J. I. Cutler, E. Auyeung, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 1376.
- 41M. Wei, N. Chen, J. Li, M. Yin, L. Liang, Y. He, H. Song, C. Fan, Q. Huang, Angew. Chem., Int. Ed. 2012, 51, 1202.
- 42P. C. Kousis, B. W. Henderson, P. G. Maier, S. O. Gollnick, Cancer Res. 2007, 67, 10501.
- 43A. P. Castano, P. Mroz, M. R. Hamblin, Nat. Rev. Cancer 2006, 6, 535.
- 44X. Duan, C. Chan, N. Guo, W. Han, R. R. Weichselbaum, W. Lin, J. Am. Chem. Soc. 2016, 138, 16686.
- 45K. Lu, C. He, N. Guo, C. Chan, K. Ni, R. R. Weichselbaum, W. Lin, J. Am. Chem. Soc. 2016, 138, 12502.
- 46Y. Xia, G. K. Gupta, A. P. Castano, P. Mroz, P. Avci, M. R. Hamblin, J. Biophotonics 2014, 7, 897.