Carbon Dioxide Promotes Dehydrogenation in the Equimolar C2H2-CO2 Reaction to Synthesize Carbon Nanotubes
Wenbo Shi
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520 USA
Search for more papers by this authorYue Peng
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorStephen A. Steiner III
Aerogel Technologies, LLC, South Boston, 02127 MA, USA
Search for more papers by this authorJunhua Li
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Desiree L. Plata
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520 USA
E-mail: [email protected]Search for more papers by this authorWenbo Shi
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520 USA
Search for more papers by this authorYue Peng
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorStephen A. Steiner III
Aerogel Technologies, LLC, South Boston, 02127 MA, USA
Search for more papers by this authorJunhua Li
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Desiree L. Plata
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520 USA
E-mail: [email protected]Search for more papers by this authorAbstract
The equimolar C2H2-CO2 reaction has shown promise for carbon nanotube (CNT) production at low temperatures and on diverse functional substrate materials; however, the electron-pushing mechanism of this reaction is not well demonstrated. Here, the role of CO2 is explored experimentally and theoretically. In particular, 13C labeling of CO2 demonstrates that CO2 is not an important C source in CNT growth by thermal catalytic chemical vapor deposition. Consistent with this experimental finding, the adsorption behaviors of C2H2 and CO2 on a graphene-like lattice via density functional theory calculations reveal that the binding energies of C2H2 are markedly higher than that of CO2, suggesting the former is more likely to incorporate into CNT structure. Further, H-abstraction by CO2 from the active CNT growth edge would be favored, ultimately forming CO and H2O. These results support that the commonly observed, promoting role of CO2 in CNT growth is due to a CO2-assisted dehydrogenation mechanism.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201703482-sup-0001-S1.pdf524.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535.
- 2B. L. Wardle, D. S. Saito, E. J. Garcia, A. J. Hart, R. G. de Villoria, E. A. Verploegen, Adv. Mater. 2008, 20, 2707.
- 3M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, A. J. Hart, Adv. Mater. 2010, 22, 4384.
- 4F. Yang, X. Wang, D. Q. Zhang, J. Yang, D. Luo, Z. W. Xu, J. K. Wei, J. Q. Wang, Z. Xu, F. Peng, X. M. Li, R. M. Li, Y. L. Li, M. H. Li, X. D. Bai, F. Ding, Y. Li, Nature 2014, 510, 522.
- 5B. L. Liu, F. Q. Wu, H. Gui, M. Zheng, C. W. Zhou, ACS Nano 2017, 11, 31.
- 6S. C. Zhang, L. X. Kang, X. Wang, L. M. Tong, L. W. Yang, Z. Q. Wang, K. Qi, S. B. Deng, Q. W. Li, X. D. Bai, F. Ding, J. Zhang, Nature 2017, 543, 234.
- 7Q. Zhang, J. Q. Huang, M. Q. Zhao, W. Z. Qian, F. Wei, Chem Sus Chem 2011, 4, 864.
- 8Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, F. Wei, Small 2013, 9, 1237.
- 9Z. R. Li, Y. Xu, X. D. Ma, E. Dervishi, V. Saini, A. R. Biris, D. Lupu, A. S. Biris, Chem. Commun. 2008, 28, 3260.
- 10J. Q. Huang, Q. Zhang, M. Q. Zhao, F. Wei, Nano Res. 2009, 2, 872.
- 11A. Magrez, J. W. Seo, R. Smajda, B. Korbely, J. C. Andresen, M. Mionic, S. Casimirius, L. Forro, ACS Nano 2010, 4, 3702.
- 12G. Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. M. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, H. J. Dai, Proc. Natl. Acad. Sci. USA 2005, 102, 16141.
- 13W. Shi, J. Li, E. S. Polsen, C. R. Oliver, Y. Zhao, E. R. Meshot, M. Barclay, D. H. Fairbrother, A. J. Hart, D. L. Plata, Nanoscale 2017, 9, 5222.
- 14K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362.
- 15J. Vanpaemel, M. H. van der Veen, D. J. Cott, M. Sugiura, I. Asselberghs, S. De Gendt, P. M. Vereecken, J. Phys. Chem. C 2015, 119, 18293.
- 16A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, E. I. Kauppinen, Chem. Phys. Lett. 2006, 417, 179.
- 17Q. Wen, W. Z. Qian, F. Wei, Y. Liu, G. Q. Ning, Q. Zhang, Chem. Mater. 2007, 19, 1226.
- 18P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, Chem. Phys. Lett. 1999, 313, 91.
- 19Y. Chen, D. Ciuparu, S. Y. Lim, Y. H. Yang, G. L. Haller, L. Pfefferle, J. Catal. 2004, 225, 453.
- 20J. Kong, A. M. Cassell, H. J. Dai, Chem. Phys. Lett. 1998, 292, 567.
- 21R. F. Zhang, Y. Y. Zhang, Q. Zhang, H. H. Xie, W. Z. Qian, F. Wei, ACS Nano 2013, 7, 6156.
- 22A. J. Hart, A. H. Slocum, L. Royer, Carbon 2006, 44, 348.
- 23S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 2002, 360, 229.
- 24X. Zhang, P. Li, H. B. Zhang, J. Liu, Nano Res. 2015, 8, 296.
- 25Y. Hu, L. X. Kang, Q. C. Zhao, H. Zhong, S. C. Zhang, L. W. Yang, Z. Q. Wang, J. J. Lin, Q. W. Li, Z. Y. Zhang, L. M. Peng, Z. F. Liu, J. Zhang, Nat. Commun. 2015, 6.
- 26J. W. Ren, F. F. Li, J. Lau, L. Gonzalez-Urbina, S. Licht, Nano Lett. 2015, 15, 6142.
- 27S. Licht, A. Douglas, J. W. Ren, R. Carter, M. Lefler, C. L. Pint, ACS Cent. Sci. 2016, 2, 162.
- 28G. Eres, A. A. Kinkhabwala, H. T. Cui, D. B. Geohegan, A. A. Puretzky, D. H. Lowndes, J. Phys. Chem. B 2005, 109, 16684.
- 29G. Eres, C. M. Rouleau, M. Yoon, A. A. Puretzky, J. J. Jackson, D. B. Geohegan, J. Phys. Chem. C 2009, 113, 15484.
- 30W. Shi, K. Xue, E. R. Meshot, D. L. Plata, Green Chem. 2017, 19, 3787.
- 31D. L. Plata, E. R. Meshot, C. M. Reddy, A. J. Hart, P. M. Gschwend, ACS Nano 2010, 4, 7185.
- 32J. Liu, C. Wang, X. M. Tu, B. L. Liu, L. Chen, M. Zheng, C. W. Zhou, Nat. Commun. 2012, 3.
- 33H. Sugime, S. Noda, Carbon 2012, 50, 2953.
- 34A. Magrez, J. W. Seo, V. L. Kuznetsov, L. Forro, Angew. Chem., Int. Ed. 2007, 46, 441.
- 35R. Xiang, B. Hou, E. Einarsson, P. Zhao, S. Harish, K. Morimoto, Y. Miyauchi, S. Chiashi, Z. K. Tang, S. Maruyama, ACS Nano 2013, 7, 3095.
- 36L. Liu, S. S. Fan, J. Am. Chem. Soc. 2001, 123, 11502.
- 37E. R. Meshot, D. L. Plata, S. Tawfick, Y. Y. Zhang, E. A. Verploegen, A. J. Hart, ACS Nano 2009, 3, 2477.
- 38Q. Zhang, M. Q. Zhao, J. Q. Huang, Y. Liu, Y. Wang, W. Z. Qian, F. Wei, Carbon 2009, 47, 2600.
- 39S. D. Costa, C. Fantini, A. Righi, A. Bachmatiuk, M. H. Rummeli, R. Saito, M. A. Pimenta, Carbon 2011, 49, 4719.
- 40E. H. Fort, P. M. Donovan, L. T. Scott, J. Am. Chem. Soc. 2009, 131, 16006.
- 41E. H. Fort, L. T. Scott, Angew. Chem., Int. Ed. 2010, 49, 6626.
- 42E. F. Kukovitsky, S. G. L'vov, N. A. Sainov, Chem. Phys. Lett. 2000, 317, 65.
- 43F. Ding, A. R. Harutyunyan, B. I. Yakobson, Proc. Natl. Acad. Sci. USA 2009, 106, 2506.
- 44J. Y. Raty, F. Gygi, G. Galli, Phys. Rev. Lett. 2005, 95.
- 45Y. Ohta, Y. Okamoto, A. J. Page, S. Irle, K. Morokuma, ACS Nano 2009, 3, 3413.
- 46J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507.
- 47T. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900.
- 48D. L. Plata, Carbon Nanotube Synthesis and Detection: Limiting the Environmental Impact of Novel Technologies. Massachusetts Institute of Technology, 2009.
- 49M. Kusmierz, Catal. Today 2008, 137, 429.
- 50Y. X. Pan, C. J. Liu, Q. F. Ge, Langmuir 2008, 24, 12410.
- 51J. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal. 2013, 3, 2449.
- 52X. Wang, H. Shi, J. H. Kwak, J. Szanyi, ACS Catal. 2015, 5, 6337.
- 53J. S. Francisco, J. T. Muckerman, H. G. Yu, Acc. Chem. Res. 2010, 43, 1519.
- 54B. J. Bjork, T. Q. Bui, O. H. Heckl, P. B. Changala, B. Spaun, P. Heu, D. Follman, C. Deutsch, G. D. Cole, M. Aspelmeyer, M. Okumura, J. Ye, Science 2016, 354, 444.
- 55J. A. Rodriguez, J. Graciani, J. Evans, J. B. Park, F. Yang, D. Stacchiola, S. D. Senanayake, S. G. Ma, M. Perez, P. Liu, J. F. Sanz, J. Hrbek, Angew. Chem., Int. Ed. 2009, 48, 8047.
- 56S. D. Senanayake, D. Stacchiola, P. Liu, C. B. Mullins, J. Hrbek, J. A. Rodriguez, J. Phys. Chem. C 2009, 113, 19536.
- 57P. Liu, Y. Choi, Y. X. Yang, M. G. White, J. Phys. Chem. A 2010, 114, 3888.
- 58A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Norskov, Energy Environ. Sci. 2010, 3, 1311.
- 59L. Yang, A. Karim, J. T. Muckerman, J. Phys. Chem. C 2013, 117, 3414.
- 60Z. R. Cao, L. Guo, N. Y. Liu, X. L. Zheng, W. L. Li, Y. Y. Shi, J. Guo, Y. R. Xi, RSC Adv. 2016, 6, 108270.
- 61W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev. 2011, 40, 3703.
- 62P. Liu, Y. X. Yang, M. G. White, Surf Sci. Rep. 2013, 68, 233.
- 63S. Sato, M. Ohhara, T. Sodesawa, F. Nozaki, Appl. Catal. 1988, 37, 207.
- 64M. B. Ansari, S. E. Park, Energy Environ. Sci. 2012, 5, 9419.
- 65G. D. Lee, S. W. Han, J. J. Yu, J. Ihm, Phys. Rev. B 2002, 66.
- 66D. L. Plata, A. J. Hart, C. M. Reddy, P. M. Gschwend, Environ. Sci. Technol. 2009, 43, 8367.
- 67M. Bedewy, E. R. Meshot, H. C. Guo, E. A. Verploegen, W. Lu, A. J. Hart, J. Phys. Chem. C 2009, 113, 20576.
- 68J. H. Taphouse, O. L. Smith, S. R. Marder, B. A. Cola, Adv. Funct. Mater. 2014, 24, 465.
- 69A. Sharma, V. Singh, T. L. Bougher, B. A. Cola, Nat. Nanotechnol. 2015, 10, 1027.
- 70N. Perea-Lopez, B. Rebollo-Plata, J. A. Briones-Leon, A. Morelos-Gomez, D. Hernandez-Cruz, G. A. Hirata, V. Meunier, A. R. Botello-Mendez, J. C. Charlier, B. Maruyama, E. Munoz-Sandoval, F. Lopez-Urias, M. Terrones, H. Terrones, ACS Nano 2011, 5, 5072.
- 71K. L. Jiang, J. P. Wang, Q. Q. Li, L. A. Liu, C. H. Liu, S. S. Fan, Adv. Mater. 2011, 23, 1154.
- 72S. A. Steiner III, Carbon Nanotube Growth on Challenging Substrates: Applications for Carbon-fiber Composites. Massachusetts Institute of Technology, 2012.
- 73A. J. Hart, L. van Laake, A. H. Slocum, Small 2007, 3, 772.
- 74T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D. N. Futaba, M. Yumura, S. Iijima, K. Hata, Nano Lett. 2008, 8, 4288.
- 75J. H. Han, R. A. Graff, B. Welch, C. P. Marsh, R. Franks, M. S. Strano, ACS Nano 2008, 2, 53.
- 76J. T. Wang, P. Liu, B. Y. Xia, H. M. Wei, Y. Wei, Y. Wu, K. Liu, L. N. Zhang, J. P. Wang, Q. Q. Li, S. S. Fan, K. L. Jiang, Nano Lett. 2016, 16, 4102.
- 77X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
- 78J. B. Sambur, T. Y. Chen, E. Choudhary, G. Q. Chen, E. J. Nissen, E. M. Thomas, N. M. Zou, P. Chen, Nature 2016, 530, 77.
- 79D. Pakhare, J. Spivey, Chem. Soc. Rev. 2014, 43, 7813.
- 80M. D. Porosoff, M. N. Z. Myint, S. Kattel, Z. H. Xie, E. Gomez, P. Liu, J. G. G. Chen, Angew. Chem., Int. Ed. 2015, 54, 15501.
- 81M. D. Porosoff, B. H. Yan, J. G. G. Chen, Energy Environ. Sci. 2016, 9, 62.