Asymmetric Fullerene Nanosurfactant: Interface Engineering for Automatic Molecular Alignments
Dae-Yoon Kim
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorSang-A Lee
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorSoeun Kim
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorChangwoon Nah
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorSeung Hee Lee
Department of BIN Convergence Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorCorresponding Author
Kwang-Un Jeong
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
E-mail: [email protected]Search for more papers by this authorDae-Yoon Kim
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorSang-A Lee
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorSoeun Kim
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorChangwoon Nah
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorSeung Hee Lee
Department of BIN Convergence Technology, Chonbuk National University, Jeonju, 54896 South Korea
Search for more papers by this authorCorresponding Author
Kwang-Un Jeong
BK21 Plus Haptic Polymer Composite Research Team & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896 South Korea
E-mail: [email protected]Search for more papers by this authorAbstract
Since the molecular self-assembly of nanomaterials is sensitive to their surface properties, the molecular packing structure on the surface is essential to build the desired chemical and physical properties of nanomaterials. Here, a new nanosurfactant is proposed for the automatic construction of macroscopic surface alignment layer for liquid crystal (LC) molecules. An asymmetric nanosurfactant (C60NS) consisted of mesogenic cyanobiphenyl moieties with flexible alkyl chains and a [60]fullerene nanoatom is newly designed and precisely synthesized. The C60NS directly introduced in the anisotropic LC medium is self-assembled into the monolayered protrusions on the surface because of its amphiphilic nature originated by asymmetrically programmed structural motif of LC-favoring moieties and LC-repelling groups. The monolayered protrusions constructed by the phase-separation and self-assembly of asymmetric C60NS nanosurfactant in the anisotropic LC media amplify and transfer the molecular orientational order from surface to bulk, and finally create the automatic vertical molecular alignment on the macroscopic length scale. The asymmetric C60NS nanosurfactant and its self-assembly described herein can offer the direct guideline of interface engineering for the automatic molecular alignments.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201702439-sup-0001-S1.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. G. Clark, G. A. Floudas, Y. J. Lee, R. Graf, H. W. Spiess, K. Müllen, J. Am. Chem. Soc. 2009, 131, 8537.
- 2D.-Y. Kim, S. Shin, W.-J. Yoon, Y.-J. Choi, J.-K. Hwang, J.-S. Kim, C.-R. Lee, T.-L. Choi, K.-U. Jeong, Adv. Funct. Mater. 2017, 27, 1606294.
- 3Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, I. I. Smalyukh, ACS Nano 2015, 9, 3097.
- 4D.-Y. Kim, S.-I. Lim, D. Jung, J.-K. Hwang, N. Kim, K.-U. Jeong, Liq. Cryst. Rev. 2017, 5, 34.
- 5T. Kato, Y. Hirai, S. Nakaso, M. Moriyama, Chem. Soc. Rev. 2007, 36, 1857.
- 6Y. J. Cha, M.-J. Gim, H. Ahn, T. J. Shin, J. Jeong, D. K. Yoon, ACS Appl. Mater. Interfaces 2017, 9, 18355.
- 7A. Sharma, T. Mori, H.-C. Lee, M. Worden, E. Bidwell, T. Hegmann, ACS Nano 2014, 8, 11966.
- 8H. Eimura, D. S. Miller, X. Wang, N. L. Abbott, T. Kato, Chem. Mater 2016, 28, 1170.
- 9J. J. Schwartz, A. M. Mendoza, N. Wattanatorn, Y. Zhao, V. T. Nguyen, A. M. Spokoyny, C. A. Mirkin, T. Baše, P. S. Weiss, J. Am. Chem. Soc. 2016, 138, 5957.
- 10D. Zhao, W. Zhou, X. Cui, Y. Tian, L. Guo, H. Yang, Adv. Mater. 2011, 23, 5779.
- 11J. Hoogboom, P. M. L. Garcia, M. B. J. Otten, J. A. A. W. Elemans, J. Sly, S. V. Lazarenko, T. Rasing, A. E. Rowan, R. J. M. Nolte, J. Am. Chem. Soc. 2005, 127, 11047.
- 12W. Zhou, L. Lin, D. Zhao, J. Guo, J. Am. Chem. Soc. 2011, 133, 8389.
- 13M. Talarico, B. Carbone, R. Barberi, A. Golemme, Appl. Phys. Lett. 2004, 85, 528.
- 14A. Patra, C. G. Chandaluri, T. P. Radhakrishnan, Nanoscale 2012, 4, 343.
- 15S. Kundu, M.-H. Lee, S. H. Lee, S.-W. Kang, Adv. Mater. 2013, 25, 3365.
- 16H. Qi, T. Hegmann, ACS Appl. Mater. Interfaces 2009, 1, 1731.
- 17D.-Y. Kim, S. Kim, S.-A Lee, Y.-E. Choi, W.-J. Yoon, S.-W. Kuo, C.-H. Hsu, M. Huang, S. H. Lee, K.-U. Jeong, J. Phys. Chem. C 2014, 118, 6300.
- 18W. Zhang, Y. Chu, G. Mu, S. A. Eghtesadi, Y. Liu, Z. Zhou, X. Lu, M. A. Kashfipour, R. S. Lillard, K. Yue, T. Liu, S. Z. D. Cheng, Macromolecules 2017, 50, 5042.
- 19D. Luo, C. Yan, T. Wang, Small 2015, 11, 5984.
- 20A. C. Stelson, S. J. Penterman, C. M. L. Watson, Small 2017, 13, 1603509.
- 21D.-Y. Kim, S.-A Lee, M. Park, Y.-J. Choi, W.-J. Yoon, J. S. Kim, Y.-T. Yu, K.-U. Jeong, Adv. Funct. Mater. 2016, 26, 4242.
- 22Y. Li, W.-B. Zhang, I.-F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, S. Z. D. Cheng, J. Am. Chem. Soc. 2011, 133, 10712.
- 23S. Zhang, S. Kumar, Small 2008, 4, 1270.
- 24H. Liu, J. Luo, W. Shang, D. Guo, J. Wang, C.-H. Hsu, M. Huang, W. Zhang, B. Lotz, W.-B. Zhang, T. Liu, K. Yue, S. Z. D. Cheng, ACS Nano 2016, 10, 6585.
- 25C.-G. Lin, W. Cheng, S. Omwoma, Y.-F. Song, J. Mater. Chem. C 2015, 3, 15.
- 26A. M. López, A. Mateo-Alonso, M. Prato, J. Mater. Chem. 2011, 21, 1305.
- 27X. Zhang, C.-H. Hsu, X. Ren, Y. Gu, B. Song, H.-J. Sun, S. Yang, E. Chen, Y. Tu, X. Li, X. Yang, Y. Li, X. Zhu, Angew. Chem., Int. Ed. 2015, 54, 114.
- 28D.-Y. Kim, M. Park, S.-A. Lee, S. Kim, C.-H. Hsu, N. Kim, S.-W. Kuo, T.-H. Yoon, K.-U. Jeong, Soft Matter 2015, 11, 58.
- 29E. Allard, F. Oswald, B. Donnio, D. Guillon, J. L. Delgado, R. Langa, R. Deschenaux, Org. Lett. 2005, 7, 383.
- 30D.-Y. Kim, P. Nayek, S. Kim, K. S. Ha, M. H. Jo, C.-H. Hsu, Y. Cao, S. Z. D. Cheng, S. H. Lee, K.-U. Jeong, Cryst. Growth Des. 2013, 13, 1309.
- 31X. Zhou, S.-W. Kang, S. Kumar, R. R. Kulkarni, S. Z. D. Cheng, Q. Li, Chem. Mater. 2008, 20, 3551.
- 32D.-Y. Kim, C. Nah, S.-W. Kang, S. H. Lee, K. M. Lee, T. J. White, K.-U. Jeong, ACS Nano 2016, 10, 9570.
- 33K. M. Lee, T. H. Ware, V. P. Tondiglia, M. K. McBride, X. Zhang, C. N. Bowman, T. J. White, ACS Appl. Mater. Interfaces 2016, 8, 28040.
- 34S.-k. Ahn, T. H. Ware, K. M. Lee, V. P. Tandiglia, T. J. White, Adv. Funct. Mater. 2016, 26, 5819.
- 35I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim, Germany 2004.
10.1002/3527602054 Google Scholar
- 36D.-Y. Kim, D.-G. Kang, S. Shin, T.-L. Choi, K.-U. Jeong, Polym. Chem. 2016, 7, 5304.
- 37N. Kim, D.-Y. Kim, M. Park, Y.-J. Choi, S. Kim, S. H. Lee, K.-U. Jeong, J. Phys. Chem. C 2015, 119, 766.
- 38M. Park, W.-J. Yoon, D.-Y. Kim, Y.-J. Choi, J. Koo, S.-I. Lim, D.-G. Kang, C.-H. Hsu, K.-U. Jeong, Cryst. Growth Des. 2017, 17, 1707.
- 39D.-Y. Kim, D.-G. Kang, M.-H. Lee, J.-S. Kim, C.-R. Lee, K.-U. Jeong, Chem. Commun. 2016, 52, 12821.
- 40D.-Y. Kim, S.-A. Lee, H. Kim, S. M. Kim, N. Kim, K.-U. Jeong, Chem. Commun. 2015, 51, 11080.
- 41D.-Y. Kim, S.-A. Lee, D.-G. Kang, M. Park, Y.-J. Choi, K.-U. Jeong, ACS Appl. Mater. Interfaces 2015, 7, 6195.
- 42L. Li, M. Salamonczyk, A. Jákli, T. Hegmann, Small 2016, 12, 3944.
- 43D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, L. Guo, ACS Appl. Mater. Interfaces 2015, 7, 23418.
- 44S.-A Lee, D.-Y. Kim, K.-U. Jeong, S. H. Lee, S. Bae, D.-S. Lee, G. Wang, T.-W. Kim, Org. Electron. 2015, 27, 18.
- 45A.-N. Cha, S.-A Lee, S. Bae, S. H. Lee, D. S. Lee, G. Wang, T.-W. Kim, ACS Appl. Mater. Interfaces 2017, 9, 2730.
- 46R. K. Roy, E. B. Gowd, S. Ramakrishnan, Macromolecules 2012, 45, 3063.
- 47D.-Y. Kim, S.-A Lee, M. Park, K.-U. Jeong, Chem. - Eur. J. 2015, 21, 545.
- 48S. H. Lee, S. S. Bhattacharyya, H. S. Jin, K.-U. Jeong, J. Mater. Chem. 2012, 22, 11893.
- 49M. Kim, R. K. Mishra, R. Manda, G. Murali, T.-H. Kim, M.-H. Lee, M. Yun, S. Kundu, B.-S. Kim, S. H. Lee, RSC Adv. 2017, 7, 16650.
- 50S. Y. Oh, S.-W. Kang, Opt. Express 2013, 21, 31367.
- 51W.-J. Yoon, Y.-J. Choi, D.-Y. Kim, J. S. Kim, Y.-T. Yu, H. Lee, J.-H. Lee, K.-U. Jeong, Macromolecules 2016, 49, 23.
- 52P. Im, Y.-J. Choi, W.-J. Yoon, D.-G. Kang, M. Park, D.-Y. Kim, C.-R. Lee, S. Yang, J.-H. Lee, K.-U. Jeong, Sci. Rep. 2016, 6, 36472.