Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure
Kun Zhao
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorXiaoqin Yan
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorYousong Gu
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorZhuo Kang
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorZhiming Bai
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorShiyao Cao
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorYichong Liu
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorXiaohui Zhang
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Yue Zhang
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]Search for more papers by this authorKun Zhao
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorXiaoqin Yan
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorYousong Gu
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorZhuo Kang
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorZhiming Bai
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorShiyao Cao
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorYichong Liu
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorXiaohui Zhang
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Yue Zhang
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083 China
E-mail: [email protected]Search for more papers by this authorAbstract
A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible-light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics. Subsequently, the CdS/RGO/ZnO heterostructure is successfully utilized for the PEC bioanalysis of glutathione at 0 V (vs Ag/AgCl). The self-powered device demonstrates satisfactory sensing performance with rapid response, a wide detection range from 0.05 mm to 1 mm, an acceptable detection limit of 10 μm, as well as certain selectivity, reproducibility, and stability. Therefore, the CdS/RGO/ZnO heterostructure has opened up a promising channel for the development of PEC biosensors.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201502042-sup-0001-S1.pdf145.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Yue, F. Lisdat, W. J. Parak, S. G. Hickey, L. P. Tu, N. Sabir, D. Dorfs, N. C. Bigall, ACS Appl. Mater. Interfaces 2013, 5, 2800.
- 2X. Zhao, S. Zhou, Q. Shen, L. Jiang, J. Zhu, Analyst 2012, 137, 3697.
- 3Z. Kang, Y. S. Gu, X. Q. Yan, Z. M. Bai, Y. C. Liu, S. Liu, X. H. Zhang, Z. Zhang, X. J. Zhang, Y. Zhang, Biosens. Bioelectron. 2015, 64, 499.
- 4Q. M. Shen, J. Y. Jiang, S. L. Liu, L. Han, X. H. Fan, M. X. Fan, Q. L. Fan, L. H. Wang, W. Huang, Nanoscale 2014, 6, 6315.
- 5Q. Shen, X. Zhao, S. Zhou, W. Hou, J. Zhu, J. Phys. Chem. C 2011, 115, 17958.
- 6R. Wang, K. Yan, F. Wang, J. Zhang, Electrochim. Acta 2014, 121, 102.
- 7J. Li, H. Li, Y. Xue, H. Fang, W. Wang, Sens. Actuators B 2014, 191, 619.
- 8H. B. Li, J. Li, Q. Xu, X. Y. Hu, Anal. Chem. 2011, 83, 9681.
- 9J. Tang, Y. Wang, J. Li, P. Da, J. Geng, G. Zheng, J. Mater. Chem. A 2014, 2, 6153.
- 10J. Tang, B. Kong, Y. C. Wang, M. Xu, Y. L. Wang, H. Wu, G. F. Zheng, Nano Lett. 2013, 13, 5350.
- 11Q. Liu, J. Cai, J. Huan, X. Dong, C. Wang, B. Qiu, K. Wang, Analyst 2014, 139, 1121.
- 12Q. Huang, F. Kang, H. Liu, Q. Li, X. D. Xiao, J. Mater. Chem. A 2013, 1, 2418.
- 13J. G. Hou, Z. Wang, C. Yang, H. J. Cheng, S. Q. Jiao, H. M. Zhu, Energy Environ. Sci. 2013, 6, 3322.
- 14Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy 2014, 14, 392
- 15W. Sheng, B. Sun, T. Shi, X. Tan, Z. Peng, G. Liao, ACS Nano 2014, 8, 7163.
- 16G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088.
- 17Y. Tak, S. J. Hong, J. S. Lee, K. Yong, J. Mater. Chem. 2009, 19, 5945.
- 18K. S. Leschkies, R. Divakar, J. Basu, E. E. Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Nano Lett. 2007, 7, 1793.
- 19N. Chouhan, C. L. Yeh, S. F. Hu, R. S. Liu, W. S. Chang, K. H. Chen, Chem. Commun. 2011, 47, 3493.
- 20G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, X. Wang, J. Mater. Chem. A 2014, 2, 5675.
- 21C. K. Chen, H. M. Chen, C. J. Chen, R. S. Liu, Chem. Commun. 2013, 49, 7917.
- 22Y. Zhang, X. Yan, Y. Yang, Y. Huang, Q. Liao, J. Qi, Adv. Mater. 2012, 24, 4647.
- 23K. Žídek, K. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chábera, M. Abdellah, V. Sundström, T. Pullerits, J. Am. Chem. Soc. 2012, 134, 12110.
- 24Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Nano Res. 2015, 8, 2891.
- 25Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang, Y. Zhang, Sci. Rep. 2015, 5, 7882.
- 26R. Marschall, Adv. Funct. Mater. 2014, 24, 2421.
- 27S. J. Guo, S. J. Dong, J. Mater. Chem. 2011, 21, 18503.
- 28X. Zhang, Y. Zhang, Q. Liao, Y. Song, S. Ma, Small 2013, 9, 4045.
- 29X. Zhang, Q. Liao, M. Chu, S. Liu, Y. Zhang, Biosens. Bioelectron. 2014, 52, 281.
- 30Y. J. Wang, F. M. Wang, J. He, Nanoscale 2013, 5, 11291.
- 31W. J. Han, L. Ren, X. Qi, Y. D. Liu, X. L. Wei, Z. Y. Huang, J. X. Zhong, Appl. Surf. Sci. 2014, 299, 12.
- 32X. Wang, L. Yin, G. Liu, Chem. Commun. 2014, 50, 3460.
- 33R. Franco, M. I. Panayiotidis, J. A. Cidlowski, J. Biol. Chem. 2007, 282, 30452.
- 34F.-X. Xiao, J. Miao, B. Liu, J. Am. Chem. Soc. 2014, 136, 1559.
- 35Z. Yan, X. Yu, A. Han, P. Xu, P. Du, J. Phys. Chem. C 2014, 118, 22896.
- 36Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, J. R. Gong, J. Am. Chem. Soc. 2011, 133, 10878.
- 37Z. Chen, S. Q. Liu, M. Q. Yang, Y. J. Xu, ACS Appl. Mater. Interfaces 2013, 5, 4309.
- 38X. Y. Zhang, F. Xu, B. Q. Zhao, X. Ji, Y. W. Yao, D. P. Wu, Z. Y. Gao, K. Jiang, Electrochim. Acta 2014, 133, 615.
- 39I. V. Lightcap, T. H. Kosel, P. V. Kamat, Nano Lett. 2010, 10, 577.
- 40G. G. Huang, X. X. Han, M. K. Hossain, Y. Ozaki, Anal. Chem. 2009, 81, 5881.
- 41Y. Wang, J. Lu, L. H. Tang, H. X. Chang, J. H. Li, Anal. Chem. 2009, 81, 9710.
- 42G. Chen, J. Wang, C. Wu, C. Li, H. Jiang, X. Wang, Langmuir 2012, 28, 12393.
- 43R. Hong, G. Han, J. M. Fernandez, B. J. Kim, N. S. Forbes, V. M. Rotello, J. Am. Chem. Soc. 2006, 128, 1078.
- 44O. Akhavan, Carbon 2011, 49, 11.
- 45E. D. Spoerke, M. T. Lloyd, Y. J. Lee, T. N. Lambert, B. B. McKenzie, Y. B. Jiang, D. C. Olson, T. L. Sounart, J. W. P. Hsu, J. A. Voigt, J. Phys. Chem. C 2009, 113, 16329.