Abstract
Specific receptors for antibodies, named Fc receptors, and for extracellular matrix proteins, named integrins, contribute to phagocyte activation. Because phagocyte activation is the mechanism whereby most of the potential pathogens are ultimately destroyed, there is a lot of interest to elucidate the biochemical signals that Fc receptors and integrins induce to activate phagocyte functions. This review describes the main signal transduction pathways that are initiated by Fc receptors and integrins in phagocytic leukocytes, with emphasis on the activation of phagocytosis and gene expression. New findings on the common signaling pathways used by Fc receptors and integrins are also discussed.
References
- [1] Jones, S.L., Lindberg, F.P., Brown, E.J. (1999): Phagocytosis. In Fundamental Immunology. Ed. W.E. Paul, Lippincott-Raven Publishers, Philadelphia, pp. 997–1020.
- [2] Sánchez-Mejorada, G., Rosales, C. (1998) Signal transduction by immunoglobulin Fc receptors. J. Leukoc. Biol. 63: 521–533.
- [3] Ravetch, J.V., Bolland, S. (2001) IgG Fc receptors. Annu. Rev. Immunol. 19: 275–290.
- [4] Tridandapani, S., Siefker, K., Teillaud, J.-L., Carter, J.E., Wewers, M.D., Anderson, C.L. (2002) Regulated expression and inhibitory function of FcγRIIb in human monocytic cells. J. Biol. Chem. 277: 5082–5089.
- [5] Ravetch, J.V. (2003) Fc receptors. In Fundamental Immunology. Ed. W.E. Paul, Lippincott Williams & Wilkins, Philadelphia, pp. 631–684.
- [6] Boruchov, A.M., Heller, G., Veri, M.C., Bonvini, E., Ravetch, J.V., Young, J.W. (2005) Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 115: 2914–2923.
- [7] Nimmerjahn, F., Ravetch, J.V. (2006) Fcγ Receptors: Old friends and new family members. Immunity 24: 19–28.
- [8] Nimmerjahn, F., Bruhns, P., Horiuchi, K., Ravetch, J.V. (2005) FcγRIV: A novel FcR with distinct IgG subclass specificity. Immunity 23: 41–51.
- [9] Roskoski, J., Robert (2004) Src protein-tyrosine kinase structure and regulation. Biochem. Biophys. Res. Comm. 324: 1155–1164.
- [10] Roskoski, J., Robert (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem. Biophys. Res. Comm. 331: 1–14.
- [11] Fitzer-Attas, C.J., Lowry, M., Crowley, M.T., Finn, A.J., Meng, F., DeFranco, A.L., Lowell, C.A. (2000) Fcγ receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J. Exp. Med. 191: 669–682.
- [12] Kim, M.-K., Pan, X.-Q., Huang, Z.-Y., Hunter, S., Hwang, P.-H., Indik, Z.K., Schreiber, A.D. (2001) Fcγ receptors differ in their structural requirements for interaction with the tyrosine kinase Syk in the initial steps of signaling for phagocytosis. Clin. Immunol. 98: 125–132.
- [13] Huang, Z.Y., Hunter, S., Kim, M.K., Chien, P., Worth, R.G., Indik, Z.K., Schreiber, A.D. (2004) The monocyte Fcgamma receptors FcgammaRI/gamma and FcgammaRIIA differ in their interaction with Syk and with Src-related tyrosine kinases. J. Leukoc. Biol. 76: 491–499.
- [14] Isakov, N. (1997) Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signal cascades. J. Leukoc. Biol. 61: 6–16.
- [15] Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J.P., Tybulewicz, V.L. (2000) Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol. Today 21: 148–154.
- [16] Bezman, N., Koretzky, G.A. (2007) Compartamentalization of ITAM and integrin signaling by adapter molecules. Immunol. Rev. 218: 9–28.
- [17] Newbrough, S.A., Mocsai, A., Clemens, R.A., Wu, J.N., Silverman, M.A., Singer, A.L., Lowell, C.A., Koretzky, G.A. (2003) SLP-76 regulates Fcγ receptor and integrin signaling in neutrophils. Immunity 19: 761–769.
- [18] Myung, P.S., Clements, J.L., White, D.W., Malik, Z.A., Cowdery, J.S., Allen, L.-A.H., Harty, J.T., Kusner, D.J., Koretzky, G.A. (2000) In vitro and in vivo macrophage function can occur independently of SLP-76. Int. Immunol. 12: 887–897.
- [19] Bonilla, F.A., Fujita, R.M., Pivniouk, V.I., Chan, A.C., Geha, R.S. (2000) Adapter proteins SLP-76 and BLNK both are expressed by murine macrophages and are linked to signaling via Fcγ receptors I and II/III. Proc. natl. Acad. Sci. U.S.A. 97: 1725–1730.
- [20] Nichols, K.E., Haines, K., Myung, P.S., Newbrough, S., Myers, E., Jumaa, H., Shedlock, D.J., Shen, H., Koretzky, G.A. (2004) Macrophage activation and Fcγ receptor-mediated signaling do not require expression of the SLP-76 and SLP-65 adaptors. J. Leukoc. Biol. 75: 541–552.
- [21] Tridandapani, S., Lyden, T.W., Smith, J.L., Carter, J.E., Coggeshall, K.M., Anderson, C.L. (2000) The adapter protein LAT enhances Fcγ Receptor-mediated signal transduction in myeloid cells. J. Biol. Chem. 275: 20480–20487.
- [22] Huang, Y., Wange, R.L. (2004) T cell receptor signaling: beyond complex complexes. J. Biol. Chem. 279: 28827–28830.
- [23] Macdonald, S.G., Crews, C.M., Wu, L., Driller, J., Clark, R., Erikson, R.L., McCormick, F. (1993) Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Mol. Cell. Biol. 13: 6615–6620.
- [24] Sánchez-Mejorada, G., Rosales, C. (1998) Fcγ receptor-mediated mitogen-activated protein kinase activation in monocytes is independent of Ras. J. Biol. Chem. 273: 27610–27619.
- [25] Chen, Q., Lin, T.H., Der, C.J., Juliano, R.L. (1996) Integrin-mediated activation of MEK and mitogen-activated protein kinase is independent of Ras. J. Biol. Chem. 271: 18122–18127.
- [26] Mishra, S., Smolik, S.M., Forte, M.A., Stork, P.J.S. (2005) Ras-independent activation of ERK signaling via the Torso Receptor Tyrosine Kinase is mediated by Rap1. Curr. Biol. 15: 366–370.
- [27] Garcia-Garcia, E., Sanchez-Mejorada, G., Rosales, C. (2001) Phosphatidylinositol 3-kinase and ERK are required for NF-κB activation, but not for phagocytosis. J. Leukoc. Biol. 70: 649–658.
- [28] García-García, E., Rosales, C. (2007) Nuclear factor activation by FcγR in human peripheral blood neutrophils detected by a novel flow cytometry-based method. J. Immunol. Meth 320: 104–118.
- [29] Rajendran, L., Simons, K. (2005) Lipid rafts and membrane dynamics. J. Cell Sci. 118: 1099–1102.
- [30] Brown, D.A., London, E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14: 111–136.
- [31] Kwiatkowska, K., Sobota, A. (2001) The clustered Fcγ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur. J. Immunol. 31: 989–998.
- [32] Kono, H., Suzuki, T., Yamamoto, K., Okada, M., Yamamoto, T., Honda, Z. (2002) Spatial raft coalescence represents an initial step in FcγR signaling. J. Immunol. 169: 193–203.
- [33] Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.J., Pierce, S.K. (2003) Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21: 457–481.
- [34] Holowka, D., Gosse, J.A., Hammond, A.T., Han, X., Sengupta, P., Smith, N.L., Wagenknecht-Wiesner, A., Wu, M., Young, R.M., Baird, B. (2005) Lipid segregation and IgE receptor signaling: a decade of progress. Biochem. Biophys. Acta 1746: 252–259.
- [35] Young, R.M., Holowka, D., Baird, B. (2003) A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J. Biol. Chem. 278: 20746–20752.
- [36] Zhang, W., Trible, R.P., Samelson, L.E. (1998) LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9: 239–246.
- [37] Golub, T., Wacha, S., Caroni, P. (2004) Spatial and temporal control of signaling through lipid rafts. Curr. Opin. Neurobiol. 14: 542–550.
- [38] Lin, J., Weiss, A., Finco, T.S. (1999) Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274: 28861–28864.
- [39] Boerth, N.J., Sadler, J.J., Bauer, D.E., Clements, J.L., Gheith, S.M., Koretzky, G.A. (2000) Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J. Exp. Med. 192: 1047–1058.
- [40] Balamuth, F., Leitenberg, D., Unternaehrer, J., Mellman, I., Bottomly, K. (2001) Distinct patterns of membrane microdomain partitioning in Th1 and Th2 cells. Immunity 15: 729–738.
- [41] Thomas, S., Preda-Pais, A., Casares, S., Brumeanu, T.D. (2004) Analysis of lipid rafts in T cells. Mol. Immunol. 41: 399–409.
- [42] Chaturvedi, A., Siddiqui, Z., Bayiroglu, F., Rao, K.V.S. (2002) A GPI-linked isoform of the IgD receptor regulates resting B cell activation. Nat. Immunol. 3: 951–957.
- [43] Munro, S. (2003) Lipid rafts:elusive or illusive? Cell 115: 377–388.
- [44] García-García, E., Brown, E.J., Rosales, C. (2007) Transmembrane mutations to FcγRIIA alter its association with lipid rafts: Implications for receptor signaling. J. Immunol. 178: 3048–3058.
- [45] Floto, R.A., Clatworthy, M.R., Heilbronn, K.R., Rosner, D.R., MacAry, P.A., Rankin, A., Lehner, P.J., Ouwehand, W.H., Allen, J.M., Watkins, N.A., Smith, K.G. (2005) Loss of function of a lupus-associated FcγRIIB polymorphism through exclusion from lipid rafts. Nat. Med. 11: 1056–1058.
- [46] Kono, H., Kyogoku, C., Suzuki1, T., Tsuchiya, N., Honda, H., Yamamoto, K., Tokunaga, K., Honda, Z.-I. (2005) FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet. 14: 2881–2892.
- [47] Barnes, N.C., Powell, M.S., RTrist, H.M., Gavin, A.L., Wines, B.D., Hogarth, P.M. (2006) Raft localisation of FcγRIIa and efficient signaling are dependent on palmitoylation of cysteine 208. Immunol. Lett. 104: 118–123.
- [48] Field, K.A., Holowka, D., Baird, B. (1997) Compartamentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J. Biol. Chem. 272: 4276–4280.
- [49] Hostager, B.S., Catlett, I.M., bishop, G.A. (2000) Recruitment of CD40 and tumor necrosis factor receptor factors 2 and 3 to membrane microdomains during CD40 signaling. J. Biol. Chem. 275: 15392–15398.
- [50] Gosse, J.A., Wagenknecht-Wiesner, A., Holowka, D., Baird, B. (2005) Transmembrane sequences are determinants of immunoreceptor signaling. J. Immunol. 175: 2123–2131.
- [51] Gatfield, J., Pieters, J. (2000) Essential role of cholesterol in entry of mycobacteria into macrophages. Science 288: 1647–1650.
- [52] Zhu, M., Shen, S., Liu, Y., Granillo, O., Zhang, W. (2005) Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development. J. Immunol. 174: 31–35.
- [53] Garcia-Garcia, E., Rosales, C. (2001): Fc receptor signaling during phagocytosis. In Activating and inhibitory immunoglobulin-like receptors. Eds. M.D. Cooper, T. Takai, J.V. Ravetch, Springer-Verlag, Tokyo, pp. 165–174.
- [54] Rabinovitch, M. (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 5: 85–87.
- [55] Yeung, T., Ozdamar, B., Paroutis, P., Grinstein, S. (2006) Lipid metabolism and dynamics during phagocytosis. Curr. Opin. Cell Biol. 18: 429–437.
- [56] Bajno, L., Peng, X.R., Schreiber, A.D., Moore, H.P., Trimble, W.S., Grinstein, S. (2000) Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol. 149: 697–706.
- [57] Garcia-Garcia, E., Rosales, C. (2002) Signal transduction in Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 72: 1092–1108.
- [58] Swanson, J.A., Hoppe, A.D. (2004) The coordination of signaling during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 76: 1093–1103.
- [59] Garcia-Garcia, E. (2005): Diversity inphagocytic signaling: A story of greed, sharing, and exploitaition. In Molecular Mechanisms of Phagocytosis. Ed. C. Rosales, Landes Bioscience/Springer Science, Georgetown, Texas, pp. 1–22.
- [60] Bokoch, G.M., Diebold, B.A. (2002) Current molecular models for NAPPH oxidase regulation by Rac GTPase. Blood 100: 2692–2696.
- [61] Patel, J.C., Hall, A., Caron, E. (2002) Vav regulates activation of Rac but not Cdc42 during FcγR-mediated phagocytosis. Mol. Biol. Cell 13: 1215–1226.
- [62] Cougoule, C., Hoshino, S., Dart, A., Lim, J., Caron, E. (2006) Dissociation of recruitment and activation of the small G-protein Rac during Fc receptor-mediated phagocytosis. J. Biol. Chem. 281: 8756–8764.
- [63] Hall, A.B., Martinez Gakidis, A., Glogauer, M., Wilsbacher, J.L., Gao, S., Swat, W., Brugge, J.S. (2006) Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcγR- and complement-mediated phagocytosis. Immunity 24: 305–316.
- [64] Botelho, R.J., Teruel, M., Dierckman, R., Anderson, R., Wells, A., York, J.D., Meyer, T., Gristein, S. (2000) Localized biphasic changes in phosphatidylinositol-4,5-biphosphate at sites of phagocytosis. J. Cell Biol. 151: 1353–1368.
- [65] Larsen, E.C., Ueyama, T., Brannock, P.M., Shirai, Y., Saito, N., Larsson, C., Loegering, D.J., Weber, P.B., Lennartz, M.R. (2002) A role for PKC-e in FcγR-mediated phagocytosis by RAW 264.7 cells. J. Cell Biol. 159: 939–944.
- [66] Vieira, O.V., Botelho, R.J., Rameh, L., Brachmann, S.M., Matsuo, T., Davidson, H.W., Schreiber, A., Backer, J.M., Cantley, L.C., Grinstein, S. (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155: 19–25.
- [67] Moon, K.D., Post, C.B., Durden, D.L., Zhou, Q., De, P., Harrison, M.L., Geahlen, R.L. (2005) Molecular basis for a direct interaction between the Syk protein-tyrosine kinase and phosphoinositide 3-kinase. J. Biol. Chem. 280: 1543–1551.
- [68] Gu, H., Botelho, R.J., Yu, M., Grinstein, S., Neel, B.G. (2003) Critical role of scaffolding adapter Gab2 in FcγR-mediated phagocytosis. J. Cell Biol. 161: 1151–1161.
- [69] Marshall, J.G., Booth, J.W., Stambolic, V., Mak, T., Balla, T., Schreiber, A.D., Meyer, T., Grinstein, S. (2001) Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fcγ receptor-mediated phagocytosis. J. Cell Biol. 153: 1369–1380.
- [70] Ellson, C.D., Anderson, K.E., Morgan, G., Chilvers, E.R., Lipp, P., Stephens, L.R., Hawkins, P.T. (2001) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr. Biol. 11: 1631–1635.
- [71] Henry, R.M., Hoppe, A.D., Joshi, N., Swanson, J.A. (2004) The uniformity of phagosome maturation in macrophages. J. Cell Biol. 164: 185–194.
- [72] Hoppe, A.D., Swanson, J.A. (2004) Cdc42, Rac1 and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell 15: 3509–3519.
- [73] Brozna, P.J., Hauff, N.F., Phillips, W.A., Johnston, R.B.J. (1988) Activation of the respiratory burst in macrophages. Phosphorylation specifically associated with Fc receptor-mediated stimulation. J. Immunol. 141: 1642–1647.
- [74] Dahlgren, C., Karlsson, A. (1999) Respiratory burst in human neutrophils. J. Immunol. Meth. 232: 3–14.
- [75] Rosenberg, H., Gallin, J. (1999): Inflammation. In Fundamental Immunology. Ed. W.E. Paul, Lippincott-Raven Publishers, Philadelphia, pp. 1051–1066.
- [76] Lehrer, R.I., Ganz, T. (1990) Antimicrobial polipeptides of human neutrophils. Blood 76: 2169–2181.
- [77] Edberg, J.C., Lin, C.T., Lau, D., Unkeless, J.C., Kimberly, R.P. (1995) The Ca2+ dependence of human Fc gamma receptor-initiated phagocytosis. J. Biol. Chem. 270: 22301–22307.
- [78] Bei, L., Hu, T., Qian, Z.M., Shen, X. (1998) Extracellular Ca2+ regulates the respiratory burst of human neutrophils. Biochim. Biophys. Acta 1404: 475–483.
- [79] Larsen, E.C., DiGennaro, J.A., Saito, N., Mehta, S., Loegering, D.J., Mazurkiewicz, J.E., Lennartz, M.R. (2000) Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J. Immunol. 165: 2809–2817.
- [80] Canetti, C., Hu, B., Curtis, J.L., Peters-Golden, M. (2003) Syk activation is a leukotriene B4–regulated event involved in macrophage phagocytosis of IgG-coated targets but not apoptotic cells. Blood 102: 1877–1883.
- [81] Kodama, T., Hazeki, K., Hazeki, O., Okada, T., Ui, M. (1999) Enhancement of chemotactic peptide-induced activation of phosphoinositide 3-kinase by granulocyte–macrophage colony-stimulating factor and its relation to the cytokine-mediated priming of neutrophil superoxide-anion production. Biochem. J. 337: 201–209.
- [82] Woo, C.-H., You, H.-J., Cho, S.-H., Eom, Y.-W., Chun, J.-S., Yoo, Y.-J., Kim, J.-H. (2002) Leukotriene B4 stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. J. Biol. Chem. 277: 8572–8578.
- [83] Chang, L.C., Wang, J.P. (1999) Examination of the signal transduction pathways leading to activation of extracellular signal-regulated kinase by formyl-methionyl-leucyl-phenylalanine in rat neutrophils. FEBS Lett. 454: 165–168.
- [84] Knall, C., Worthen, G.S., Johnson, G.L. (1997) Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc. Natl. Acad. Sci. USA 94: 3052–3057.
- [85] Garcia-Garcia, E., Rosales, R., Rosales, C. (2002) Phosphatidylinositol 3-kinase and extracellular signal-regulated kinase are recruited for Fc receptor-mediated phagocytosis during monocyte to macrophage differentiation. J. Leukoc. Biol. 72: 107–114.
- [86] Newman, S.L., Devery-Pocius, J.E., Ross, G.D., Henson, P.M. (1984) Phagocytosis by human monocyte-derived macrophages. Independent function of receptors for C3b (CR1) and iC3b (CR3). Complement 1: 213–227.
- [87] Karimi, K., Lennartz, M.R. (1995) Protein kinase C activation precedes arachidonic acid release during IgG-mediated phagocytosis. J. Immunol. 155: 5786–5794.
- [88] Kambayashi, T., Koretzky, G.A. (2007) Proximal signaling events in Fc epsilon RI-mediated mast cell activation. J. Allergy Clin. Immunol. 119: 544–5552.
- [89] Hazan-Halevy, I., Seger, R., Levy, R. (2000) The requirement of both extracellular regulated kinase and p38 mitogen-activated protein kinase for stimulation of cytosolic phospholipase A2 activity by either FcγRIIA or FcγRIIIB in human neutrophils: A possible role of Pyk2 but not for the Grb-2-Sos-Shc complex. J. Biol. Chem. 275: 12416–12423.
- [90] Arnaout, M.A. (2002) Integrin structure: new twists and turns in dynamic cell adhesion. Immunol. Rev. 186: 125–140.
- [91] Hynes, R.O. (2002) Integrins: biderectional, allosteric signaling machines. Cell 110: 673–687.
- [92] Luo, B.H., Carman, C.V., Springer, T.A. (2007) Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25: 619–647.
- [93] Brown, E.J., Lindberg, F.P. (1996) Leukocyte adhesion molecules in host defense against infection. Ann. Med. 28: 201–208.
- [94] Smyth, S.S., Joneckis, C.C., Parise, L.V. (1993) Regulation of vascular integrins. Blood 81: 2827–2843.
- [95] Shattil, S.J., Kashiwagi, H., Pampori, N. (1998) Integrin signaling: the platelet paradigm. Blood 91: 2645–2657.
- [96] Clark, E.A., Brugge, J.S. (1995) Integrins and signal transduction pathways: The road taken. Science 268: 233–239.
- [97] Rosales, C., Juliano, R.L. (1995) Signal transduction by cell adhesion receptors in leukocytes. J. Leuk. Biol. 57: 189–198.
- [98] Ginsberg, M.H., Partridge, A.W., Shattil, S.J. (2005) Integrin regulation. Curr. Opin. Cell Biol. 17: 509–516.
- [99] Liddington, R.C., Ginsberg, M.H. (2002) Integrin activation takes shape. J. Cell Biol. 158: 833–839.
- [100] Xiong, J.P., Stehle, T., Goodman, S.L., Arnaout, M.A. (2003) New insights into the structural basis of integrin activation. Blood. 102: 1155–1159.
- [101] Burbach, B.J., Medeiros, R.B., Mueller, K.L., Shimizu, Y. (2007) T-cell receptor signaling to integrins. Immunol. Rev. 218: 65–81.
- [102] Ortiz-Stern, A., Rosales, C. (2003) Cross-talk between Fc receptors and integrins. Immunol. Lett. 90: 137–143.
- [103] Graham, I.L., Lefkowith, J.B., Anderson, D.C., Brown, E.J. (1993) Immune complex-stimulated LTB4 production is dependent on β2 integrins. J. Cell Biol. 120: 1509–1517.
- [104] Jones, S.L., Knaus, U.G., Bokoch, G.M., Brown, E.J. (1998) Two signaling mechanisms for activation of αMβ2 avidity in polymorphonuclear neutrophils. J. Biol. Chem. 273: 10556–10566.
- [105] Andrews, R.P., Kepley, C.L., Youssef, L., Wilson, B.S., Oliver, J.M. (2001) Regulation of the very late antigen-4-mediated adhesive activity of normal and nonreleaser basophils: roles for Src, Syk, and phosphatidylinositol 3-kinase. J. Leukoc. Biol. 70: 776–782.
- [106] Ortiz-Stern, A., Rosales, C. (2005) FcγRIIIB stimulation promotes β1 integrin activation in human neutrophils. J. Leukoc. Biol. 77: 787–799.
- [107] Ménasché, G., Kliche, S., Bezman, N., Schraven, B. (2007) Regulation of T-cell antigen receptor-mediated inside-out signaling by cytosolic adapter proteins and Rap1 effector molecules. Immunol. Rev. 218: 82–91.
- [108] Wu, J.N., Jordan, M.S., Silverman, M.A., Peterson, E.J., Koretzky, G.A. (2004) Differential requirement for adapter proteins Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and adhesion- and degranulation-promoting adapter protein in FceRI signaling and mast cell function. J. Immunol. 172: 6768–6774.
- [109] Berton, G., Lowell, C.A. (1999) Integrin signalling in neutrophils and macrophages. Cell Signal 11: 621–635.
- [110] Reyes-Reyes, M., Mora, N., Gonzalez, G., Rosales, C. (2002) β1 and β2 integrins activate different signalling pathways in monocytes. Biochem. J. 363: 273–280.
- [111] Lin, T.H., Rosales, C., Mondal, K., Bolen, J.B., Haskill, S., Juliano, R.L. (1995) Integrin-mediated tyrosine phosphorylation and cytokine message induction in a monocytic cell line: A possible signaling role for the Syk tyrosine kinase. J. Biol. Chem. 270: 16189–16197.
- [112] Rosales, C., Juliano, R. (1996) Integrin signaling to NF-κB in monocytic leukemia cells is blocked by activated oncogenes. Cancer Res. 56: 2302–2305.
- [113] Reyes-Reyes, M., Mora, N., Zentella, A., Rosales, C. (2001) Phosphatidylinositol 3-kinase mediates integrin-dependent NF-κB and MAPK activation through separate signaling pathways. J. Cell Sci. 114: 1579–1589.
- [114] Yan, S.R., Huang, M., Berton, G. (1997) Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases inneutrophils spreading over fibrinogen. J. Immunol. 158: 1902–1910.
- [115] Mócsai, A., Zhou, M., Meng, F., Tybulewicz, V.L., Lowell, C.A. (2002) Syk is required for integrin signaling in neutrophils. Immunity 16: 547–558.
- [116] Mocsai, A., Zhang, H., Jakus, Z., Kitaura, J., Kawakami, T., Lowell, C.A. (2003) G-protein-coupled receptor signaling in Syk-deficient neutrophils and mast cells. Blood 101: 4155–4163.
- [117] Mócsai, A., Ligeti, E., Lowell, C.A., Berton, G. (1999) Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck. J. Immunol. 162: 1120–1126.
- [118] Meng, F., Lowell, C.A. (1998) A β1 integrin signaling pathway involving Src-family kinases, Cbl, and PI-3 kinase is required for macrophage spreading and migration. EMBO J. 17: 4391–4403.
- [119] Obergfell, A., Judd, B.A., del Pozo, M.A., Schwartz, M.A., Koretzky, G.A., Shattil, S.J. (2001) The molecular adapter SLP-76 relays signals from platelet integrin aIIbβ3 to the actin cytoskeleton. J. Biol. Chem. 276: 5916–5923.
- [120] Gakidis, M.A., Cullere, X., Olson, T., Wilsbacher, J.L., Zhang, B., Moores, S.L., Ley, K., Swat, W., Mayadas, T., Brugge, J.S. (2004) Vav GEFs are required for β2 integrin-dependent functions of neutrophils. J. Cell Biol. 166: 273–282.
- [121] Gao, J., Zoller, K.E., Ginsberg, M.H., Brugge, J.S., Shattil, S.J. (1997) Regulation of the pp72syk protein tyrosine kinase by platelet integrin aIIbβ3. EMBO J. 16: 6414–6425.
- [122] Woodside, D.G., Obergfell, A., Talapatra, A., Calderwood, D.A., Shattil, S.J., Ginsberg, M.H. (2002) The N-terminal SH2 domains of Syk and ZAP-70 mediate phosphotyrosine-independent binding to integrin ® cytoplasmic domains. J. Biol. Chem. 277: 39401–39408.
- [123] Judd, B.A., Myung, P.S., Obergfell, A., Myers, E.E., Cheng, A.M., Watson, S.P., Pear, W.S., Allman, D., Shattil, S.J., Koretzky, G.A. (2002) Differential requirement for LAT and SLP-76 in GPVI versus T cell receptor signaling. J. Exp. Med. 195: 705–717.
- [124] Wonerow, P., Obergfell, A., Wilde, J.I., Bobe, R., Asazuma, N., Brdikas, T., Leo, A., Schraven, B., Hoeji, V., Shattil, S.J., Watson, S.P. (2002) Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cγ2 regulation in platelets. Biochem. J. 364: 755–765.
- [125] Mócsai, A., Abram, C.L., Jakus, Z., Hu, Y., Lanier, L.L., Lowell, C.A. (2006) Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat. Immunol. 13: 1326–1333.
- [126] Abtahian, F., Bezman, N., Clemens, R., Sebzda, E., Cheng, L., Shattil, S.J., Kahn, M.L., Koretzky, G.A. (2006) Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Mol. Cell. Biol. 26: 6936–6949.
- [127] Brown, E.J. (2005) Complement receptors, adhesion, and phagocytosis. In Molecular Mechanisms of Phagocytosis. Ed. C. Rosales, Landes Bioscience/Springer Science, Georgetown, Texas, pp. 49–57.
- [128] van Lookeren Campagne, M., Wiesmann, C., Brown, E.J. (2007) Macrophage complement receptors and pathogen clearance. Cell. Microbiol. 9: 2095–2102.
- [129] Swanson, J.A., Baer, S.C. (1995) Phagocytosis by zippers and triggers. Trends Cell Biol. 5: 89–93.
- [130] Aderem, A., Underhill, D.M. (1999) Mechanisms of phagocytosis in macrophages. Ann. Rev. Immunol. 17: 593–623.
- [131] Allen, L.A., Aderem, A. (1996) Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184: 627–637.
- [132] Kiefer, F., Brumell, J., Al-Alawi, N., Latour, S., Cheng, A., Veillette, A., Grinstein, S., Pawson, T. (1998) The Syk protein tyrosine kinase is essential for Fcγ receptor signaling in macrophages and neutrophils. Mol. Cell. Biol. 18: 4209–4220.
- [133] Lowell, C.A., Berton, G. (1999) Integrin signal transduction in myeloid leucocytes. J. Leukoc. Biol. 65: 313–320.
- [134] Shi, Y., Tohyama, Y., Kadono, T., He, J., Miah, S.M.S., Hazama, R., Tanaka, C., Tohyama, K., Yamamura, H. (2006) Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 107: 4554–4562.
- [135] Newman, S.L., Mikus, L.K., Tucci, M.A. (1991) Differential requirements for cellular cytoskeleton in human macrophage complement receptor- and Fc receptor-mediated phagocytosis. J. Immunol. 146: 967–974.
- [136] Coppolino, M.G., Krause, M., Hagendorff, P., Monner, D.A., Trimble, W., Grinstein, S., Wehland, J., Sechi, A.S. (2001) Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcγ receptor signalling during phagocytosis. J. Cell Sci. 114: 4307–4318.
- [137] Caron, E., Hall, A. (1998) Identification of two distinct mechanisms of phagocytosis controled by different Rho GTPases. Science 282: 1717–1721.
- [138] Olazabal, I.M., Caron, E., May, R.C., Schilling, K., Knecht, D.A., Machesky, L.M. (2002) Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol. 12: 1413–1418.
- [139] Wiedemann, A., Patel, J.C., Lim, J., Tsun, A., van Kooyk, Y., Caron, E. (2006) Two distinct cytoplasmic regions of the β2 integrin chain regulate RhoA function during phagocytosis. J. Cell Biol. 172: 1069–1079.
- [140] Schwartz, M.A., Shattil, S.J. (2000) Signaling networks linking integrins and Rho family GTPases. TIBS 25: 388–391.
- [141] Lowell, C.A. (2006) Rewiring phagocytic signal transduction. Immunity 24: 243–245.