CD43 – One molecule, many tales to recount
Gustavo Pedraza-Alva
Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
Search for more papers by this authorGustavo Pedraza-Alva
Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
Search for more papers by this authorAbstract
Immune cells functions are regulated through the orchestrated intervention of immune receptors that recognize non-self peptides or pathogen associated molecular patterns and of molecules that modulate the signals these receptors generate. These molecules, known as accessory or co-receptor molecules, sense the environment, setting the threshold for cell activation, as well as instructing the cells to ensure self-tolerance and homeostasis. CD43 is an abundant cell surface protein, expressed on nearly all lineages of hematopoietic cells. Multiple, and sometimes opposite functions, have been attributed to CD43: adhesion and anti-adhesion, locomotion, cellular activation, differentiation, proliferation and apoptosis. Here we will summarize recent developments in our understanding of the role this molecule plays in different cell types. In particular, we will illustrate the role of CD43 as a T cell accessory molecule, capable of generating intracellular signals, independently of or in coordination with the TCR, actively modulating T cell response. In addition, we review new functions for this molecule, in non-immune cells.
References
- [1] Shelley, C. S., Remold-O'Donnell, E., Davis, A. E., 3rd, Bruns, G. A., Rosen, F. S., Carroll, M. C. and Whitehead, A. S. (1989) Molecular characterization of sialophorin (CD43), the lymphocyte surface sialoglycoprotein defective in Wiskott-Aldrich syndrome. Proc. Natl. Acad. Sci. U. S. A. 86: 2819–2823.
- [2] Pallant, A., Eskenazi, A., Mattei, M. G., Fournier, R. E., Carlsson, S. R., Fukuda, M. and Frelinger, J. G. (1989) Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16. Proc. Natl. Acad. Sci. U. S. A. 86: 1328–1332.
- [3] Cyster, J., Somoza, C., Killeen, N. and Williams, A. F. (1990) Protein sequence and gene structure for mouse leukosialin (CD43), a T lymphocyte mucin without introns in the coding sequence. Eur. J. Immunol. 20: 875–881.
- [4] Shelley, C. S., Remold-O'Donnell, E., Rosen, F. S. and Whitehead, A. S. (1990) Structure of the human sialophorin (CD43) gene. Identification of features atypical of genes encoding integral membrane proteins. Biochem. J. 270: 569–576.
- [5] Kudo, S. and Fukuda, M. (1991) A short, novel promoter sequence confers the expression of human leukosialin, a major sialoglycoprotein on leukocytes. J. Biol. Chem. 266: 8483–8489.
- [6] Carlsson, S. R. and Fukuda, M. (1986) Isolation and characterization of leukosialin, a major sialoglycoprotein on human leukocytes. J. Biol. Chem. 261: 12779–12786.
- [7] Fukuda, M. and Carlsson, S. R. (1986) Leukosialin, a major sialoglycoprotein on human leukocytes as differentiation antigens. Med. Bio. 64: 335–343.
- [8] Live, D. H., Williams, L. J., Kuduk, S. D., Schwarz, J. B., Glunz, P. W., Chen, X. T., Sames, D., Kumar, R. A. and Danishefsky, S. J. (1999) Probing cell-surface architecture through synthesis: an NMR-determined structural motif for tumor-associated mucins. Proc. Natl. Acad. Sci. U. S. A. 96: 3489–3493.
- [9] Cyster, J. G., Shotton, D. M. and Williams, A. F. (1991) The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. Embo J. 10: 893–902.
- [10] Gendler, S. J. and Spicer, A. P. (1995) Epithelial mucin genes. Annu. Rev. Physiol. 57: 607–634.
- [11] Mody, P. D., Cannon, J. L., Bandukwala, H. S., Blaine, K. M., Schilling, A. B., Swier, K. and Sperling, A. I. (2007) Signaling through CD43 regulates CD4 T cell trafficking. Blood 110: 2974–82.
- [12] Pedraza-Alva, G., Merida, L. B., Burakoff, S. J. and Rosenstein, Y. (1996) CD43-specific activation of T cells induces association of CD43 to Fyn kinase. J. Biol. Chem. 271: 27564–27568.
- [13] Remold-O'Donnell, E., Kenney, D. and Rosen, F. S. (1987) Biosynthesis of human sialophorins and analysis of the polypeptide core. Biochemistry 26: 3908–3913.
- [14] Piller, F., Piller, V., Fox, R. I. and Fukuda, M. (1988) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J. Biol. Chem. 263: 15146–15150.
- [15] Maemura, K. and Fukuda, M. (1992) Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Le(x) structures in O-glycans. J. Biol. Chem. 267: 24379–24386.
- [16] Brown, T. J., Shuford, W. W., Wang, W. C., Nadler, S. G., Bailey, T. S., Marquardt, H. and Mittler, R. S. (1996) Characterization of a CD43/leukosialin-mediated pathway for inducing apoptosis in human T-lymphoblastoid cells. J. Biol. Chem. 271: 27686–27695.
- [17] Baecher-Allan, C. M., Kemp, J. D., Dorfman, K. S., Barth, R. K. and Frelinger, J. G. (1993) Differential epitope expression of Ly-48 (mouse leukosialin). Immunogenetics 37: 183–192.
- [18] Amano, J., Morimoto, C. and Irimura, T. (2001) Intestinal epithelial cells express and secrete the CD43 glycoform that contains core 2 O-glycans. Microbes Infect. 3: 723–728.
- [19] Baeckstrom, D., Zhang, K., Asker, N., Ruetschi, U., Ek, M. and Hansson, G. C. (1995) Expression of the leukocyte-associated sialoglycoprotein CD43 by a colon carcinoma cell line. J. Biol. Chem. 270: 13688–13692.
- [20] Fernandez-Rodriguez, J., Andersson, C. X., Laos, S., Baeckstrom, D., Sikut, A., Sikut, R. and Hansson, G. C. (2002) The leukocyte antigen CD43 is expressed in different cell lines of nonhematopoietic origin. Tumour Biol. 23: 193–201.
- [21] Losy, J., Maehlen, J., Olsson, T. and Kristensson, K. (1989) Distribution of leukosialin (W3/13)-like immunoreactivity in the rat central nervous system. J. Neurocytol. 18: 71–76.
- [22] Kudo, S. (1998) Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol. Cell Biol. 18: 5492–5499.
- [23] Da Silva, N., Bharti, A. and Shelley, C. S. (2002) hnRNP-K and Pur(alpha) act together to repress the transcriptional activity of the CD43 gene promoter. Blood 100: 3536–3544.
- [24] Yonemura, S., Nagafuchi, A., Sato, N. and Tsukita, S. (1993) Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. J. Cell Biol. 120: 437–449.
- [25] Sanchez-Mateos, P., Campanero, M. R., del Pozo, M. A. and Sanchez-Madrid, F. (1995) Regulatory role of CD43 leukosialin on integrin-mediated T-cell adhesion to endothelial and extracellular matrix ligands and its polar redistribution to a cellular uropod. Blood 86: 2228–2239.
- [26] Allenspach, E. J., Cullinan, P., Tong, J., Tang, Q., Tesciuba, A. G., Cannon, J. L., Takahashi, S. M., Morgan, R., Burkhardt, J. K. and Sperling, A. I. (2001) ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15: 739–750.
- [27] Seveau, S., Lopez, S., Lesavre, P., Guichard, J., Cramer, E. M. and Halbwachs-Mecarelli, L. (1997) Leukosialin (CD43, sialophorin) redistribution in uropods of polarized neutrophils is induced by CD43 cross-linking by antibodies, by colchicine or by chemotactic peptides. J. Cell Sci. 110(Pt 13): 1465–1475.
- [28] Delon, J., Kaibuchi, K. and Germain, R. N. (2001) Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15: 691–701.
- [29] Bazil, V., Brandt, J., Chen, S., Roeding, M., Luens, K., Tsukamoto, A. and Hoffman, R. (1996) A monoclonal antibody recognizing CD43 (leukosialin) initiates apoptosis of human hematopoietic progenitor cells but not stem cells. Blood 87: 1272–1281.
- [30] Remold-O'Donnell, E. and Parent, D. (1994) Two proteolytic pathways for down-regulation of the barrier molecule CD43 of human neutrophils. J. Immunol. 152: 3595–3605.
- [31] Halbwachs-Mecarelli, L., Bessou, G., Lesavre, P., Renesto, P. and Chignard, M. (1996) Neutrophil serine proteases are most probably involved in the release of CD43 (leukosialin, sialophorin) from the neutrophil membrane during cell activation. Blood 87: 1200–1202.
- [32] Weber, S., Babina, M., Hermann, B. and Henz, B. M. (1997) Leukosialin (CD43) is proteolytically cleaved from stimulated HMC-1 cells. Immunobiology 197: 82–96.
- [33] Andersson, C. X., Fernandez-Rodriguez, J., Laos, S., Baeckstrom, D., Haass, C. and Hansson, G. C. (2005) Shedding and gamma-secretase-mediated intramembrane proteolysis of the mucin-type molecule CD43. Biochem. J. 387: 377–384.
- [34] Kudo, S. and Fukuda, M. (1994) Transcriptional activation of human leukosialin (CD43) gene by Sp1 through binding to a GGGTGG motif. Eur J Biochem. 223: 319–327.
- [35] Farokhzad, O. C., Teodoridis, J. M., Park, H., Arnaout, M. A. and Shelley, C. S. (2000) CD43 gene expression is mediated by a nuclear factor which binds pyrimidine-rich single-stranded DNA. Nucleic Acids Res. 28: 2256–2267.
- [36] Babina, M., Weber, S. and Henz, B. M. (1997) CD43 (leukosialin, sialophorin) expression is differentially regulated by retinoic acids. Eur. J. Immunol. 27: 1147–1151.
- [37] Kudo, S. and Fukuda, M. (1995) Tissue-specific transcriptional regulation of human leukosialin (CD43) gene is achieved by DNA methylation. J. Biol. Chem. 270: 13298–13302.
- [38] Serrador, J. M., Nieto, M., Alonso-Lebrero, J. L., del Pozo, M. A., Calvo, J., Furthmayr, H., Schwartz-Albiez, R., Lozano, F., Gonzalez-Amaro, R., Sanchez-Mateos, P. and Sanchez-Madrid, F. (1998) CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts. Blood 91: 4632–4644.
- [39] Roumier, A., Olivo-Marin, J. C., Arpin, M., Michel, F., Martin, M., Mangeat, P., Acuto, O., Dautry-Varsat, A. and Alcover, A. (2001) The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15: 715–728.
- [40] Cullinan, P., Sperling, A. I. and Burkhardt, J. K. (2002) The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev. 189: 111–122.
- [41] Schmid, K., Hediger, M. A., Brossmer, R., Collins, J. H., Haupt, H., Marti, T., Offner, G. D., Schaller, J., Takagaki, K., Walsh, M. T. et al. (1992) Amino acid sequence of human plasma galactoglycoprotein: identity with the extracellular region of CD43 (sialophorin). Proc. Natl. Acad. Sci. U. S. A. 89: 663–667.
- [42] Campanero, M. R., Pulido, R., Alonso, J. L., Pivel, J. P., Pimentel-Muinos, F. X., Fresno, M. and Sanchez-Madrid, F. (1991) Down-regulation by tumor necrosis factor-alpha of neutrophil cell surface expression of the sialophorin CD43 and the hyaluronate receptor CD44 through a proteolytic mechanism. Eur. J. Immunol. 21: 3045–3048.
- [43] Lopez, S., Halbwachs-Mecarelli, L., Ravaud, P., Bessou, G., Dougados, M. and Porteu, F. (1995) Neutrophil expression of tumour necrosis factor receptors (TNF-R) and of activation markers (CD11b, CD43, CD63) in rheumatoid arthritis. Clin. Exp. Immunol. 101: 25–32.
- [44] Remold-O'Donnell, E. and Parent, D. (1995) Specific sensitivity of CD43 to neutrophil elastase. Blood 86: 2395–2402.
- [45] Gluschankof, P., Mondor, I., Gelderblom, H. R. and Sattentau, Q. J. (1997) Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology 230: 125–133.
- [46] Rosenstein, Y., Park, J. K., Hahn, W. C., Rosen, F. S., Bierer, B. E. and Burakoff, S. J. (1991) CD43, a molecule defective in Wiskott-Aldrich syndrome, binds ICAM-1. Nature 354: 233–235.
- [47] Stockl, J., Majdic, O., Kohl, P., Pickl, W. F., Menzel, J. E. and Knapp, W. (1996) Leukosialin (CD43)-major histocompatibility class I molecule interactions involved in spontaneous T cell conjugate formation. J. Exp. Med. 184: 1769–1779.
- [48] Baum, L. G., Derbin, K., Perillo, N. L., Wu, T., Pang, M. and Uittenbogaart, C. (1996) Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. J. Biol. Chem. 271: 10793–10799.
- [49] Nathan, C., Xie, Q. W., Halbwachs-Mecarelli, L. and Jin, W. W. (1993) Albumin inhibits neutrophil spreading and hydrogen peroxide release by blocking the shedding of CD43 (sialophorin, leukosialin). J. Cell Biol. 122: 243–256.
- [50] van den Berg, T. K., Nath, D., Ziltener, H. J., Vestweber, D., Fukuda, M., van Die, I. and Crocker, P. R. (2001) Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J. Immunol. 166: 3637–3640.
- [51] Hirano, K., Miki, Y., Hirai, Y., Sato, R., Itoh, T., Hayashi, A., Yamanaka, M., Eda, S. and Beppu, M. (2005) A multifunctional shuttling protein nucleolin is a macrophage receptor for apoptotic cells. J. Biol. Chem. 280: 39284–39293.
- [52] Matsumoto, M., Atarashi, K., Umemoto, E., Furukawa, Y., Shigeta, A., Miyasaka, M. and Hirata, T. (2005) CD43 functions as a ligand for E-Selectin on activated T cells. J. Immunol. 175: 8042–8050.
- [53] Fuhlbrigge, R. C., King, S. L., Sackstein, R. and Kupper, T. S. (2006) CD43 is a ligand for E-selectin on CLA+ human T cells. Blood 107: 1421–1426.
- [54] Alcaide, P., King, S. L., Dimitroff, C. J., Lim, Y. C., Fuhlbrigge, R. C. and Luscinskas, F. W. (2007) The 130-kDa glycoform of CD43 functions as an E-selectin ligand for activated Th1 cells in vitro and in delayed-type hypersensitivity reactions in vivo. J Invest Dermatol 127: 1964–1972.
- [55]
Fratazzi, C.,
Manjunath, N.,
Arbeit, R. D.,
Carini, C.,
Gerken, T. A.,
Ardman, B.,
Remold-O'Donnell, E. and
Remold, H. G.
(2000)
A macrophage invasion mechanism for mycobacteria implicating the extracellular domain of CD43.
J. Exp. Med.
192:
183–192.
10.1084/jem.192.2.183 Google Scholar
- [56] Todeschini, A. R., Girard, M. F., Wieruszeski, J. M., Nunes, M. P., DosReis, G. A., Mendonca-Previato, L. and Previato, J. O. (2002) Trans-Sialidase from Trypanosoma cruzi binds host T-lymphocytes in a lectin manner. J. Biol. Chem. 277: 45962–45968.
- [57] Hartshorn, K. L., Liou, L. S., White, M. R., Kazhdan, M. M., Tauber, J. L. and Tauber, A. I. (1995) Neutrophil deactivation by influenza A virus. Role of hemagglutinin binding to specific sialic acid-bearing cellular proteins. J. Immunol. 154: 3952–3960.
- [58] Abramson, J. S. and Hudnor, H. R. (1995) Role of the sialophorin (CD43) receptor in mediating influenza A virus-induced polymorphonuclear leukocyte dysfunction. Blood 85: 1615–1619.
- [59] Ardman, B., Sikorski, M. A., Settles, M. and Staunton, D. E. (1990) Human immunodeficiency virus type 1-infected individuals make autoantibodies that bind to CD43 on normal thymic lymphocytes. J. Exp. Med. 172: 1151–1158.
- [60] Barat, C. and Tremblay, M. J. (2002) Engagement of CD43 enhances human immunodeficiency virus type 1 transcriptional activity and virus production that is induced upon TCR/CD3 stimulation. J. Biol. Chem. 277: 28714–28724.
- [61] Manjunath, N., Johnson, R. S., Staunton, D. E., Pasqualini, R. and Ardman, B. (1993) Targeted disruption of CD43 gene enhances T lymphocyte adhesion. J. Immunol. 151: 1528–1534.
- [62] Manjunath, N., Correa, M., Ardman, M. and Ardman, B. (1995) Negative regulation of T-cell adhesion and activation by CD43. Nature 377: 535–538.
- [63] Alvarado, M., Klassen, C., Cerny, J., Horejsi, V. and Schmidt, R. E. (1995) MEM-59 monoclonal antibody detects a CD43 epitope involved in lymphocyte activation. Eur. J. Immunol. 25: 1051–1055.
- [64] Cruz-Munoz, M. E., Salas-Vidal, E., Salaiza-Suazo, N., Becker, I., Pedraza-Alva, G. and Rosenstein, Y. (2003) The CD43 coreceptor molecule recruits the zeta-chain as part of its signaling pathway. J. Immunol. 171: 1901–1908.
- [65] Pedraza-Alva, G., Merida, L. B., Burakoff, S. J. and Rosenstein, Y. (1998) T cell activation through the CD43 molecule leads to Vav tyrosine phosphorylation and mitogen-activated protein kinase pathway activation. J. Biol. Chem. 273: 14218–14224.
- [66] Mentzer, S. J., Remold-O'Donnell, E., Crimmins, M. A., Bierer, B. E., Rosen, F. S. and Burakoff, S. J. (1987) Sialophorin, a surface sialoglycoprotein defective in the Wiskott-Aldrich syndrome, is involved in human T lymphocyte proliferation. J. Exp. Med. 165: 1383–1392.
- [67] Chatila, T. A. and Geha, R. S. (1988) Phosphorylation of T cell membrane proteins by activators of protein kinase C. J. Immunol. 140: 4308–4314.
- [68] Silverman, L. B., Wong, R. C., Remold-O'Donnell, E., Vercelli, D., Sancho, J., Terhorst, C., Rosen, F., Geha, R. and Chatila, T. (1989) Mechanism of mononuclear cell activation by an anti-CD43 (sialophorin) agonistic antibody. J. Immunol. 142: 4194–4200.
- [69] Babina, M., Weber, S., Mammeri, K. and Henz, B. M. (1998) Signal transduction via CD43 (leukosialin, sialophorin) and associated biological effects in human mast cell line (HMC-1). Biochem. Biophys. Res. Commun. 243: 163–169.
- [70] Pedraza-Alva, G., Sawasdikosol, S., Liu, Y. C., Merida, L. B., Cruz-Munoz, M. E., Oceguera-Yanez, F., Burakoff, S. J. and Rosenstein, Y. (2001) Regulation of Cbl molecular interactions by the co-receptor molecule CD43 in human T cells. J. Biol. Chem. 276: 729–737.
- [71] Del Rio, R., Rincon, M., Layseca-Espinosa, E., Fierro, N. A., Rosenstein, Y. and Pedraza-Alva, G. (2004) PKCtheta; is required for the activation of human T lymphocytes induced by CD43 engagement. Biochem. Biophys. Res. Commun. 325: 133–143.
- [72] Santana, M. A., Pedraza-Alva, G., Olivares-Zavaleta, N., Madrid-Marina, V., Horejsi, V., Burakoff, S. J. and Rosenstein, Y. (2000) CD43-mediated signals induce DNA binding activity of AP-1, NF-AT, and NFkappa B transcription factors in human T lymphocytes. J. Biol. Chem. 275: 31460–31468.
- [73] Layseca-Espinosa, E., Pedraza-Alva, G., Montiel, J. L., del Rio, R., Fierro, N. A., Gonzalez-Amaro, R. and Rosenstein, Y. (2003) T cell aggregation induced through CD43: intracellular signals and inhibition by the immunomodulatory drug leflunomide. J. Leukoc. Biol. 74: 1083–1093.
- [74] Tada, J., Omine, M., Suda, T. and Yamaguchi, N. (1999) A common signaling pathway via Syk and Lyn tyrosine kinases generated from capping of the sialomucins CD34 and CD43 in immature hematopoietic cells. Blood 93: 3723–3735.
- [75] Skubitz, K. M., Campbell, K. D. and Skubitz, A. P. (1998) CD43 is associated with tyrosine kinase activity in human neutrophils. J. Leukoc. Biol. 64: 800–802.
- [76] Cho, J. Y., Chain, B. M., Vives, J., Horejsi, V. and Katz, D. R. (2003) Regulation of CD43-induced U937 homotypic aggregation. Exp. Cell Res. 290: 155–167.
- [77] de Smet, W., Walter, H. and van Hove, L. (1993) A new CD43 monoclonal antibody induces homotypic aggregation of human leucocytes through a CD11a/CD18-dependent and -independent mechanism. Immunology 79: 46–54.
- [78] Anzai, N., Gotoh, A., Shibayama, H. and Broxmeyer, H. E. (1999) Modulation of integrin function in hematopoietic progenitor cells by CD43 engagement: possible involvement of protein tyrosine kinase and phospholipase C-gamma. Blood 93: 3317–3326.
- [79] Yonemura, S., Hirao, M., Doi, Y., Takahashi, N., Kondo, T. and Tsukita, S. (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140: 885–895.
- [80] del Pozo, M. A., Sanchez-Mateos, P. and Sanchez-Madrid, F. (1996) Cellular polarization induced by chemokines: a mechanism for leukocyte recruitment? Immunol. Today 17: 127–131.
- [81] Nieto, M., del Pozo, M. A. and Sanchez-Madrid, F. (1996) Interleukin-15 induces adhesion receptor redistribution in T lymphocytes. Eur. J. Immunol. 26: 1302–1307.
- [82] del Pozo, M. A., Sanchez-Mateos, P., Nieto, M. and Sanchez-Madrid, F. (1995) Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J. Cell Bio. 131: 495–508.
- [83] Dehghani Zadeh, A., Seveau, S., Halbwachs-Mecarelli, L. and Keller, H. U. (2003) Chemotactically-induced redistribution of CD43 as related to polarity and locomotion of human polymorphonuclear leucocytes. Biol. Cell 95: 265–273.
- [84] Savage, N. D., Kimzey, S. L., Bromley, S. K., Johnson, K. G., Dustin, M. L. and Green, J. M. (2002) Polar redistribution of the sialoglycoprotein CD43: implications for T cell function. J. Immunol. 168: 3740–3746.
- [85] Andersson, C. X., Fernandez-Rodriguez, J., Laos, S., Sikut, R., Sikut, A., Baeckstrom, D. and Hansson, G. C. (2004) CD43 has a functional NLS, interacts with beta-catenin, and affects gene expression. Biochem. Biophys. Res. Commun. 316: 12–17.
- [86] Li, X., Wang, Y., Debatin, K. M. and Hug, H. (2000) The serine/threonine kinase HIPK2 interacts with TRADD, but not with CD95 or TNF-R1 in 293T cells. Biochem. Biophys. Res. Commun. 277: 513–517.
- [87] Wang, W., Link, V. and Green, J. M. (2000) Identification and cloning of a CD43-associated serine/threonine kinase. Cell. Immunol. 205: 34–39.
- [88] Cermak, L., Simova, S., Pintzas, A., Horejsi, V. and Andera, L. (2002) Molecular mechanisms involved in CD43-mediated apoptosis of TF-1 cells. Roles of transcription Daxx expression, and adhesion molecules. J. Biol. Chem. 277: 7955–7961.
- [89] Nong, Y. H., Remold-O'Donnell, E., LeBien, T. W. and Remold, H. G. (1989) A monoclonal antibody to sialophorin (CD43) induces homotypic adhesion and activation of human monocytes. J. Exp. Med. 170: 259–267.
- [90] Randhawa, A. K., Ziltener, H. J., Merzaban, J. S. and Stokes, R. W. (2005) CD43 is required for optimal growth inhibition of Mycobacterium tuberculosis in macrophages and in mice. J. Immunol. 175: 1805–1812.
- [91] Eda, S., Yamanaka, M. and Beppu, M. (2004) Carbohydrate-mediated phagocytic recognition of early apoptotic cells undergoing transient capping of CD43 glycoprotein. J. Biol. Chem. 279: 5967–5974.
- [92] Corinti, S., Fanales-Belasio, E., Albanesi, C., Cavani, A., Angelisova, P. and Girolomoni, G. (1999) Cross-linking of membrane CD43 mediates dendritic cell maturation. J. Immunol. 162: 6331–6336.
- [93] Fanales-Belasio, E., Zambruno, G., Cavani, A. and Girolomoni, G. (1997) Antibodies against sialophorin (CD43) enhance the capacity of dendritic cells to cluster and activate T lymphocytes. J. Immunol. 159: 2203–2211.
- [94] Seveau, S., Keller, H., Maxfield, F. R., Piller, F. and Halbwachs-Mecarelli, L. (2000) Neutrophil polarity and locomotion are associated with surface redistribution of leukosialin (CD43), an antiadhesive membrane molecule. Blood 95: 2462–2470.
- [95] Rosenkranz, A. R., Majdic, O., Stockl, J., Pickl, W., Stockinger, H. and Knapp, W. (1993) Induction of neutrophil homotypic adhesion via sialophorin (CD43), a surface sialoglycoprotein restricted to haemopoietic cells. Immunology 80: 431–438.
- [96] Kuijpers, T. W., Hoogerwerf, M., Kuijpers, K. C., Schwartz, B. R. and Harlan, J. M. (1992) Cross-linking of sialophorin (CD43) induces neutrophil aggregation in a CD18-dependent and a CD18-independent way. J. Immunol. 149: 998–1003.
- [97] Rothwell, S. W. and Wright, D. G. (1994) Characterization of influenza A virus binding sites on human neutrophils. J. Immunol. 152: 2358–2367.
- [98] McCann, F. E., Vanherberghen, B., Eleme, K., Carlin, L. M., Newsam, R. J., Goulding, D. and Davis, D. M. (2003) The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J. Immunol. 170: 2862–2870.
- [99] Nieto, M., Rodriguez-Fernandez, J. L., Navarro, F., Sancho, D., Frade, J. M., Mellado, M., Martinez, A. C., Cabanas, C. and Sanchez-Madrid, F. (1999) Signaling through CD43 induces natural killer cell activation, chemokine release, and PYK-2 activation. Blood 94: 2767–2777.
- [100] Vargas-Cortes, M., Axelsson, B., Larsson, A., Berzins, T. and Perlmann, P. (1988) Enhancement of human spontaneous cell-mediated cytotoxicity by a monoclonal antibody against the large sialoglycoprotein (CD43) on peripheral blood lymphocytes. Scand J. Immunol. 27: 661–671.
- [101] Drew, E., Merzaban, J. S., Seo, W., Ziltener, H. J. and McNagny, K. M. (2005) CD34 and CD43 inhibit mast cell adhesion and are required for optimal mast cell reconstitution. Immunity 22: 43–57.
- [102] Davis, D. M., Igakura, T., McCann, F. E., Carlin, L. M., Andersson, K., Vanherberghen, B., Sjostrom, A., Bangham, C. R. and Hoglund, P. (2003) The protean immune cell synapse: a supramolecular structure with many functions. Semin. Immunol. 15: 317–324.
- [103] Acuto, O., Mise-Omata, S., Mangino, G. and Michel, F. (2003) Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol. Rev. 192: 21–31.
- [104] Fierro, N. A., Pedraza-Alva, G. and Rosenstein, Y. (2006) TCR-dependent cell response is modulated by the timing of CD43 engagement. J. Immunol. 176: 7346–53.
- [105] Altan-Bonnet, G. and Germain, R. N. (2005) Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol. 3: e356.
- [106] Beier, K. C., Kallinich, T. and Hamelmann, E. (2007) Master switches of T-cell activation and differentiation. Eur. Respir. J. 29: 804–812.
- [107] Brown, W. R., Barclay, A. N., Sunderland, C. A. and Williams, A. F. (1981) Identification of a glycophorin-like molecule at the cell surface of rat thymocytes. Nature 289: 456–460.
- [108] Bromley, S. K., Iaboni, A., Davis, S. J., Whitty, A., Green, J. M., Shaw, A. S., Weiss, A. and Dustin, M. L. (2001) The immunological synapse and CD28-CD80 interactions. Nat. Immunol. 2: 1159–1166.
- [109]
Bikoue, A.,
George, F.,
Poncelet, P.,
Mutin, M.,
Janossy, G. and
Sampol, J.
(1996)
Quantitative analysis of leukocyte membrane antigen expression: normal adult values.
Cytometry
26:
137–147.
10.1002/(SICI)1097-0320(19960615)26:2<137::AID-CYTO7>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- [110] Thien, C. B. and Langdon, W. Y. (2005) c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem. J 391: 153–166.
- [111] Stefanova, I., Hemmer, B., Vergelli, M., Martin, R., Biddison, W. E. and Germain, R. N. (2003) TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4: 248–254.
- [112] Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. and Dustin, M. L. (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285: 221–227.
- [113] Mattioli, I., Dittrich-Breiholz, O., Livingstone, M., Kracht, M. and Schmitz, M. L. (2004) Comparative analysis of T-cell costimulation and CD43 activation reveals novel signaling pathways and target genes. Blood 104: 3302–3304.
- [114] Montufar-Solis, D., Garza, T. and Klein, J. R. (2005) Selective upregulation of immune regulatory and effector cytokine synthesis by intestinal intraepithelial lymphocytes following CD43 costimulation. Biochem. Biophys. Res. Commun. 338: 1158–1163.
- [115]
Park, J. K.,
Rosenstein, Y. J.,
Remold-O'Donnell, E.,
Bierer, B. E.,
Rosen, F. S. and
Burakoff, S. J.
(1991)
Enhancement of T-cell activation by the CD43 molecule whose expression is defective in Wiskott-Aldrich syndrome.
Nature
350:
706–709.
10.1038/350706a0 Google Scholar
- [116] Bagriacik, E. U., Tang, M., Wang, H. C. and Klein, J. R. (2001) CD43 potentiates CD3-induced proliferation of murine intestinal intraepithelial lymphocytes. Immunol. Cell Biol. 79: 303–307.
- [117] Sperling, A. I., Green, J. M., Mosley, R. L., Smith, P. L., DiPaolo, R. J., Klein, J. R., Bluestone, J. A. and Thompson, C. B. (1995) CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J. Exp. Med. 182: 139–146.
- [118] Kyoizumi, S., Ohara, T., Kusunoki, Y., Hayashi, T., Koyama, K. and Tsuyama, N. (2004) Expression characteristics and stimulatory functions of CD43 in human CD4+ memory T cells: analysis using a monoclonal antibody to CD43 that has a novel lineage specificity. J. Immunol. 172: 7246–7253.
- [119] Bagriacik, E. U., Armstrong, M. D., Okabe, M. and Klein, J. R. (1999) Differential expression of CD43 isoforms on murine T cells and their relationship to acute intestinal graft versus host disease: studies using enhanced-green fluorescent protein transgenic mice. Int Immunol. 11: 1651–1662.
- [120] Green, D. R., Droin, N. and Pinkoski, M. (2003) Activation-induced cell death in T cells. Immunol. Rev. 193: 70–81.
- [121] Juo, P., Kuo, C. J., Yuan, J. and Blenis, J. (1998) Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol. 8: 1001–1008.
- [122] Kim, H. J., Park, H. J., Park, W. S. and Bae, Y. (2006) CD43 cross-linking increases the Fas-induced apoptosis through induction of Fas aggregation in Jurkat T-cells. Exp. Mol. Med. 38: 357–363.
- [123] Fuertes, M. B., Molinero, L. L., Toscano, M. A., Ilarregui, J. M., Rubinstein, N., Fainboim, L., Zwirner, N. W. and Rabinovich, G. A. (2004) Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol. Cell Biochem. 267: 177–185.
- [124] Perillo, N. L., Pace, K. E., Seilhamer, J. J. and Baum, L. G. (1995) Apoptosis of T cells mediated by galectin-1. Nature 378: 736–739.
- [125] Toscano, M. A., Bianco, G. A., Ilarregui, J. M., Croci, D. O., Correale, J., Hernandez, J. D., Zwirner, N. W., Poirier, F., Riley, E. M., Baum, L. G. and Rabinovich, G. A. (2007) Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8: 825–834.
- [126]
Onami, T. M.,
Harrington, L. E.,
Williams, M. A.,
Galvan, M.,
Larsen, C. P.,
Pearson, T. C.,
Manjunath, N.,
Baum, L. G.,
Pearce, B. D. and
Ahmed, R.
(2002)
Dynamic regulation of T cell immunity by CD43.
J. Immunol.
168:
6022–6031.
10.4049/jimmunol.168.12.6022 Google Scholar
- [127] Rabinovich, G. A., Alonso, C. R., Sotomayor, C. E., Durand, S., Bocco, J. L. and Riera, C. M. (2000) Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ. 7: 747–753.
- [128] Aouad, S. M., Cohen, L. Y., Sharif-Askari, E., Haddad, E. K., Alam, A. and Sekaly, R. P. (2004) Caspase-3 is a component of Fas death-inducing signaling complex in lipid rafts and its activity is required for complete caspase-8 activation during Fas-mediated cell death. J. Immunol. 172: 2316–2323.
- [129] Wiken, M., Bjorck, P., Axelsson, B. and Perlmann, P. (1989) Enhancement of human B-cell proliferation by a monoclonal antibody to CD43. Scand. J. Immunol. 29: 363–370.
- [130] Wiken, M., Bjorck, P., Axelsson, B. and Perlmann, P. (1989) Studies on the role of CD43 in human B-cell activation and differentiation. Scand. J. Immunol. 29: 353–361.
- [131] Dragone, L. L., Barth, R. K., Sitar, K. L., Disbrow, G. L. and Frelinger, J. G. (1995) Disregulation of leukosialin (CD43, Ly48, sialophorin) expression in the B-cell lineage of transgenic mice increases splenic B-cell number and survival. Proc. Natl. Acad. Sci. U. S. A. 92: 626–630.
- [132] Ostberg, J. R., Dragone, L. L., Driskell, T., Moynihan, J. A., Phipps, R., Barth, R. K. and Frelinger, J. G. (1996) Disregulated expression of CD43 (leukosialin, sialophorin) in the B cell lineage leads to immunodeficiency. J. Immunol. 157: 4876–4884.
- [133] Treasure, J., Lane, A., Jones, D. B. and Wright, D. H. (1992) CD43 expression in B cell lymphoma. J. Clin. Pathol. 45: 1018–1022.
- [134] Lai, R., Weiss, L. M., Chang, K. L. and Arber, D. A. (1999) Frequency of CD43 expression in non-Hodgkin lymphoma. A survey of 742 cases and further characterization of rare CD43+ follicular lymphomas. Am. J. Clin. Pathol. 111: 488–494.
- [135] Lee, P. S., Beneck, D., Weisberger, J. and Gorczyca, W. (2005) Coexpression of CD43 by benign B cells in the terminal ileum. Appl. Immunohistochem. Mol. Morphol. 13: 138–141.
- [136] Ardman, B., Sikorski, M. A. and Staunton, D. E. (1992) CD43 interferes with T-lymphocyte adhesion. Proc. Natl. Acad. Sci. U. S. A. 89: 5001–5005.
- [137] Carlow, D. A., Corbel, S. Y. and Ziltener, H. J. (2001) Absence of CD43 fails to alter T cell development and responsiveness. J. Immunol. 166: 256–261.
- [138]
Woodman, R. C.,
Johnston, B.,
Hickey, M. J.,
Teoh, D.,
Reinhardt, P.,
Poon, B. Y. and
Kubes, P.
(1998)
The functional paradox of CD43 in leukocyte recruitment: a study using CD43-deficient mice.
J. Exp. Med.
188:
2181–2186.
10.1084/jem.188.11.2181 Google Scholar
- [139] Stockton, B. M., Cheng, G., Manjunath, N., Ardman, B. and von Andrian, U. H. (1998) Negative regulation of T cell homing by CD43. Immunity 8: 373–381.
- [140] Matsumoto, M., Shigeta, A., Furukawa, Y., Tanaka, T., Miyasaka, M. and Hirata, T. (2007) CD43 collaborates with P-selectin glycoprotein ligand-1 to mediate E-selectin-dependent T cell migration into inflamed skin. J. Immunol. 178: 2499–2506.
- [141] Ford, M. L., Onami, T. M., Sperling, A. I., Ahmed, R. and Evavold, B. D. (2003) CD43 modulates severity and onset of experimental autoimmune encephalomyelitis. J. Immunol. 171: 6527–6533.
- [142] Ford, M. L. and Evavold, B. D. (2006) Modulation of MOG 37-50-specific CD8+ T cell activation and expansion by CD43. Cell. Immunol 240: 53–61.
- [143] Moore, T., Huang, S., Terstappen, L. W., Bennett, M. and Kumar, V. (1994) Expression of CD43 on murine and human pluripotent hematopoietic stem cells. J. Immunol. 153: 4978–4987.
- [144] Matsumoto, H., Daikoku, T., Wang, H., Sato, E. and Dey, S. K. (2004) Differential expression of ezrin/radixin/moesin (ERM) and ERM-associated adhesion molecules in the blastocyst and uterus suggests their functions during implantation. Biol. Reprod. 70: 729–736.