The Prospects of a Subnanometer Focused Neon Ion Beam
Corresponding Author
John A. Notte
Carl Zeiss NTS, Peabody, Massachusetts
Carl Zeiss NTS, 1 Corporation Way, Peabody, MA 01960Search for more papers by this authorRichard H. Livengood
Intel Corporation, Santa Clara, California
Search for more papers by this authorCorresponding Author
John A. Notte
Carl Zeiss NTS, Peabody, Massachusetts
Carl Zeiss NTS, 1 Corporation Way, Peabody, MA 01960Search for more papers by this authorRichard H. Livengood
Intel Corporation, Santa Clara, California
Search for more papers by this authorSummary
The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress. SCANNING 33: 129–134, 2012. © 2011 Wiley Periodicals, Inc.
References
- Bell DC. 2009. Contrast mechanisms and image formation in helium ion microscopy. Microsc Miroanal 15: 147–153.
- Cohen-Tanugi D, Yao N. 2008. Superior imaging resolution in scanning helium-ion microscopy: a look at beam-sample interaction. J Appl Phys 104:063504.
- Hill R, Rahman FHM. 2011. Advances in helium ion microscopy. Nucl Instrum Methods Phys Res A 645: 96–101.
- Inai K, Ohya K, Ishitani T. 2007. Simulation study on image contrast and spatial resolution in helium ion microscope. J Electron Microsc 56: 163–169.
- Janssen AP, Jones JP. 1972. The effect of neon in the helium ion imaging in the field ion microscope. Surf Sci 33: 553–564.
- Kuo HS, Hwang IS, Fu TY, Lin YC, Chang CC, Tsong TT. 2006. Noble metal/W(111) single-atom tips and their field electron and ion emission characteristics. Jpn J Appl Phys 45: 8972–8983.
- Lemme MC, Bell DC, Williams JR, Stern LA, Baugher WH, Jarillo-Herrero P, Marcus CM. 2009. Etching of graphene devices with a helium ion beam. Am Chem Soc Nano 3: 2674–2676.
- Moore G. 1965. Cramming more components onto integrated circuits. Electronics 38: 114–117.
- Mousa MS. 2011. Characteristics of a high brightness gaseous field ion source employing tungsten-carbon doped NiAl needles. Ultramicroscopy 111: 421–425.
- Müller EW, Tsong TT. 1969. Field ion microscopy–principles and applications. New York: American Elsevier Company.
- Nishikawa O, Müller EW. 1964. Operation of the field ion microscope with neon. J Appl Phys 35: 2806–2812.
- Notte JA, Rahman FHM, McVey SM, Tan S, Livengood RH. 2010. The neon gas field ion source—stability and lifetime. Microsc Microanal 16: 28–29.
- Pickard D, Scipioni L. 2009. Applications note: Graphene nano-ribbon patterning in the ORION Plus. Carl Zeiss application note available through the web page, www.zeiss.com/nts
- Rahman F, Onoda J, Imaizumi K, Mizuno S. 2008. Field-assisted oxygen etching for sharp field-emission tip. Surf Sci 602: 2128–2134.
- Rezeq M, Pitters J, Wolkow R. 2006. Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen. J Chem Phys 124: 204716.
- Sanford C, Stern L, Barriss L, Farkas L, DiManna M, Mello R, Maas DJ, Alkemade PFA. 2009. Beam induced deposition of platinum using a helium ion microscope. J Vac Sci Technol B 27: 2660–2667.
- Schmidt W, Reisner T, Krautz E. 1971. Field ion microscope observation of interaction phenomena of neon atoms with platinum and platinum gold alloy surfaces. Surf Sci 26: 297–302.
- Scipioni L, Sanford C, Notte J, Thompson B, McVey S. 2009. Understanding imaging modes in the helium ion microscope. J Vac Sci Technol B 27: 3250–3255.
- Scipioni L, Ferranti DC, Smentkowski VS, Potyrailo A. 2010. Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope. J Vac Sci Technol B 28: C6P18–C6P23.
- Sidorkin V, van Veldhoven E, van der Drift E, Alkemade P, Salemink H, Maas D. 2009. Sub-10-nm nanolithography with a scanning helium beam. J Vac Sci Technol B 27: L18–L20.
- Sijbrandij S, Notte J, Scipioni L, Huynh C, Sanford C. 2010a. Analysis and metrology with a focused helium ion beam. J Vac Sci Technol B 28: 73–77.
- Sijbrandij S, Notte J, Sanford C, Hill R. 2010b. Analysis of subsurface beam spread and its impact in the image resolution of the helium on microscope. J Vac Sci Technol B 28: C6F6–C6F9.
- Tan S, Livengood RH, Shima D, Notte JA, McVey S. 2010. Gas field ion source and liquid metal ion source charged particle material interaction study for semiconductor nanomachining applications. J Vac Sci Technol B 28: C6F15–C6F21.
- Tan S, Livengood RH, Hallstein R, Shima D, Notte JA, McVey S. 2011. Neon ion microscope nanomachining considerations. To be published in ISTFA 2011. Proceedings of the 37th International Symposium for Testing and Failure Analysis.
- Winston D, Cord BM, Ming B, Bell DC, DiNatale WF, Stern LA, Vladar AE, Postek MT, Mondol MK, Yang JKW, Berggren KK. 2009. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist. J Vac Sci Technol B 27: 2702–2706.
- Ziegler JF, Biersack JP, Littmark U. 1984. The stopping and range of ions in matter, Vol. 1. New York: Pergamo Press. (www.SRIM.org).
- Zhou Y, Loh KP. 2010. Making patterns on graphene. Adv Mater 22: 3615–3620.