Piezoresistive cantilever array sensor for consolidated bioprocess monitoring
Seonghwan Kim
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorTouhidur Rahman
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorLarry R. Senesac
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorBrian H. Davison
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorCorresponding Author
Thomas Thundat
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831Search for more papers by this authorSeonghwan Kim
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorTouhidur Rahman
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorLarry R. Senesac
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorBrian H. Davison
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Search for more papers by this authorCorresponding Author
Thomas Thundat
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831Search for more papers by this authorAbstract
Cellulolytic microbes occur in diverse natural niches and are being screened for industrial modification and utility. A microbe for consolidated bioprocessing (CBP) development can rapidly degrade pure cellulose and then ferment the resulting sugars into fuels. To identify and screen for novel microbes for CBP, we have developed a piezoresistive cantilever array sensor which is capable of simultaneous monitoring of glucose and ethanol concentration changes in a phosphate buffer solution. 4-mercaptophenylboronic acid and polyethyleneglycol-thiol are employed to functionalize each piezoresistive cantilever for glucose and ethanol sensing, respectively. Successful concentration measurements of glucose and ethanol with minimal interferences are obtained with our cantilever array sensor. SCANNING 31: 204–210, 2009. © 2009 Wiley Periodicals, Inc.
References
- Baker GA, Desikan R, Thundat T: Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers. Anal Chem 80, 4860–4865 (2008).
- Berger R, Delamarche E, Lang HP, Gerber C, Gimzewski JK, et al.: Surface stress in the self-assembly of alkanethiols on gold. Science 276, 2021–2024 (1997).
- Boisen A, Thaysen J, Jensenius H, Hansen O: Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy 82, 11–16 (2000).
- Chen GY, Thundat T, Wachter EA, Warmack RJ: Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J Appl Phys 77, 3618–3622 (1995).
- Desikan R, Armel S, Meyer HM, Thundat T: Effect of chain length on nanomechanics of alkanethiol self-assembly. Nanotechnology 18, 424028 (2007).
- Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, et al.: Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).
- Godin M, Williams PJ, Tabard-Cossa V, Laroche O, Beaulieu LY, et al.: Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers. Langmuir 20, 7090–7096 (2004).
- Hansen KM, Thundat T: Microcantilever biosensors. Methods 37, 57–64 (2005).
- Kim DJ, Weeks BL, Hope-Weeks LJ: Effect of surface conjugation chemistry on the sensitivity of microcantilever sensors. Scanning 29, 245–248 (2007).
- Kohale S, Molina SM, Weeks BL, Khare R, Hope-Weeks LJ: Monitoring the formation of self-assembled monolayers of alkanedithiols using a micromechanical cantilever sensor. Langmuir 23, 1258–1263 (2007).
- Lavrik NV, Sepaniak MJ, Datskos PG: Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75, 2229–2253 (2004).
- Lee D, Kim S, Jung N, Thundat T, Jeon S: Effects of gold patterning on the bending profile and frequency response of a microcantilever. J Appl Phys 106, 024310 (2009).
- Mertens J, Calleja M, Ramos D, Tarýn A, Tamayo J: Role of the gold film nanostructure on the nanomechanical response of microcantilever sensors. J Appl Phys 101, 034904 (2007).
- Mielenz JR: Biofuels and Biotechnology: Status and Potential. Molecular Biology and Biotechnology 5th ed., Royal Society of Chemistry, Cambridge, UK 548–584 (2009).
10.1007/978-1-60761-214-8 Google Scholar
- Mukhopadhyay R, Lorentzen M, Kjems J, Besenbacher F: Nanomechanical sensing of DNA sequences using piezoresistive cantilevers. Langmuir 21, 8400–8408 (2005).
- Oden PI, Chen GY, Steele RA, Warmack RJ, Thundat T: Viscous drag measurements utilizing microfabricated cantilevers. Appl Phys Lett 68, 3814–3816 (1996).
- Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, et al.: Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17, 6336–6343 (2001).
- Pinnaduwage LA, Hedden DL, Gehl A, Boiadjiev VI, Hawk JE, et al.: A sensitive, handheld vapor sensor based on microcantilevers. Rev Sci Instrum 75, 4554–4557 (2004).
- Raiteri R, Grattarola M, Butt HJ, Skládal P: Micromechanical cantilever-based biosensors. Sens Actuators B 79, 115–126 (2001).
- Rasmussen PA, Thaysen J, Hansen O, Eriksen SC, Boisen A: Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97, 371–376 (2003).
- Seo H, Jung S, Jeon S: Detection of formaldehyde vapor using mercaptophenol-coated piezoresistive cantilevers. Sens Actuators B 126, 522–526 (2007).
- Tabard-Cossa V, Godin M, Burgessm IJ, Monga T, Lennox RB, Grütter P: Microcantilever-based sensors: Effect of morphology, adhesion, and cleanliness of the sensing surface on surface stress. Anal Chem 79, 8136–8143 (2007).
- Tamayo J, Humphris ADL, Malloy AM, Miles MJ: Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86, 167–173 (2001).
- Thundat T, Oden PI, Warmack RJ: Microcantilever sensors. Microscale Thermophys Eng 1, 185–199 (1997).
- Thundat T, Warmack RJ, Chen GY, Allison DP: Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64, 2894–2896 (1994).
- Weeks BL, Camarero J, Noy A, Miller AE, Stanker L, De Yoreo JJ: A microcantilever-based pathogen detector. Scanning 25, 297–299 (2003).
- Yu X, Thaysen J, Hansen O, Boisen A: Optimization of sensitivity and noise in piezoresistive cantilevers. J Appl Phys 92, 6296–6301 (2002).
- Yue M, Stachowiak JC, Lin H, Datar R, Cote R, Majumdar A: Label-free protein recognition two-dimensional array using nanomechanical sensors. Nano Lett 8, 520–524 (2008).