Set-based gain-scheduled control via quasi-convex difference inclusions
Corresponding Author
Antonio Sala
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain
Correspondence Antonio Sala, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Cno. Vera s/n, 46022 Valencia, Spain.
Email: [email protected]
Search for more papers by this authorCarlos Ariño
Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castelló de la Plana, Spain
Search for more papers by this authorRuben Robles
Universidad Tecmilenio, Campus Las Torres, Monterrey, Mexico
Search for more papers by this authorCorresponding Author
Antonio Sala
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain
Correspondence Antonio Sala, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Cno. Vera s/n, 46022 Valencia, Spain.
Email: [email protected]
Search for more papers by this authorCarlos Ariño
Department of Industrial Systems Engineering and Design, Universitat Jaume I, Castelló de la Plana, Spain
Search for more papers by this authorRuben Robles
Universidad Tecmilenio, Campus Las Torres, Monterrey, Mexico
Search for more papers by this authorSummary
A nonlinear system with sector-bounded nonlinearities may be expressed as a quasi-linear parameter-varying (LPV) system (convex combination of linear models), being this a well-known fact. The convex difference inclusion (CDI) modeling framework proposed by Fiacchini and coworkers in several of their works generalizes the quasi-LPV modeling procedure and proposes robust controllers enlarging polytopic domain of attraction estimates. This works further generalizes the CDI approach to a gain-scheduled case including, also, some quasi-convex cases. Controller design is based on convexity properties of two set valued maps describing (with some uncertainty) the state evolution and the state-dependent set where scheduling variables take values. As most set-based approaches, the proposal is tractable in low-dimensional cases. The presented results encompass prior quasi-LPV and CDI models as particular cases.
REFERENCES
- 1Blanchini F. Set invariance in control. Automatica. 1999; 35(11): 1747-1767.
- 2Kouramas KI, Rakovic SV, Kerrigan EC, Allwright JC, Mayne DQ. On the minimal robust positively invariant set for linear difference inclusions. Paper presented at: Proceedings of the 44th IEEE Conference on Decision and Control, European Control Conference, Seville, Spain; 2005:2296-2301.
- 3Mayne DQ. Control of constrained dynamic systems. Europ J Control. 2001; 7(2): 87-99.
- 4Kerrigan Eric Colin. Robust constraint satisfaction: invariant sets and predictive control [PhD thesis]. University of Cambridge, UK; 2001.
- 5Rakovic SV, Grieder P, Kvasnica M, Mayne DQ, Morari M. Computation of invariant sets for piecewise affine discrete time systems subject to bounded disturbances. Paper presented at: Proceedings of the 43rd IEEE Conference on Decision and Control; vol 2. Atlantis, Paradise Island, Bahamas; 2004:1418-423.
- 6Herceg M, Kvasnica M, Jones CN, Morari M. Multi-parametric toolbox 3.0. Paper presented at: Proceedings of the European Control Conference, Zurich, Switzerland; 2013:502-510.
- 7Boyd S, Vandenberghe L. Convex Optimization. Cambridge, MA: Cambridge University Press; 2004.
10.1017/CBO9780511804441 Google Scholar
- 8Guerra TM, Vermeiren L. LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form. Automatica. 2004; 40(5): 823-829.
- 9Sala A. On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Ann Rev Control. 2009; 33(1): 48-58.
- 10Wu F, Dong K. Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions. Automatica. 2006; 42(1): 39-50.
- 11Sala A. Stability analysis of LPV systems: scenario approach. Automatica. 2019; 104: 233-237.
- 12Rugh WJ, Shamma JS. Research on gain scheduling. Automatica. 2000; 36(10): 1401-1425.
- 13Tanaka K, Wang HO. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Hoboken, NJ: John Wiley & Sons; 2004.
- 14Bianchi FD, Mantz RJ, Christiansen CF. Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models. Control Eng Pract. 2005; 13(2): 247-255.
- 15Kwiatkowski A, Werner H. PCA-based parameter set mappings for LPV models with fewer parameters and less overbounding. IEEE Trans Control Syst Technol. 2008; 16(4): 781-788.
- 16Robles R, Sala A, Bernal M. Performance-oriented quasi-LPV modelling of nonlinear systems. Int J Robust Nonlinear Control. 2019; 29(5): 1230-1248.
- 17Prajna S, Papachristodoulou A, Wu F. Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach. Paper presented at: Proceedings of the 5th Asian Control Conference; vol 1. Melbourne, Australia; 2004:157-165.
- 18Sala A, Ariño C. Polynomial fuzzy models for nonlinear control: a Taylor series approach. IEEE Trans Fuzzy Syst. 2009; 17(6): 1284-1295.
- 19Fiacchini M. Convex difference inclusions for systems analysis and control [PhD thesis]. Universidad de SevillaSpain; 2010.
- 20Fiacchini M, Alamo T, Camacho EF. On the computation of convex robust control invariant sets for nonlinear systems. Automatica. 2010; 46(8): 1334-1338.
- 21Fiacchini M, Alamo T, Camacho EF. Invariant sets computation for convex difference inclusions systems. Syst Control Lett. 2012; 61(8): 819-826.
- 22Riah R, Fiacchini M, Alamir M. Iterative method for estimating the robust domains of attraction of non-linear systems: application to cancer chemotherapy model with parametric uncertainties. Europ J Control. 2019; 47: 64-73.
- 23Rotondo D, Cristofaro A, Johansen TA, Nejjari F, Puig V. State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers. Int J Control. 2018; 91(8): 1944-1961.
- 24Pourasghar M, Puig V, Ocampo-Martinez C. Interval observer versus set-membership approaches for fault detection in uncertain systems using zonotopes. Int J Robust Nonlinear Control. 2019; 29: 2819-2843.
- 25Li J, Wang Z, Shen Y, Rodrigues M. Zonotopic fault detection observer for linear parameter-varying descriptor systems. Int J Robust Nonlinear Control. 2019; 29(11): 3426-3445.
- 26Shamma JS, Xiong D. Set-valued methods for linear parameter varying systems. Automatica. 1999; 35(6): 1081-1089.
- 27Ariño C, Sala A, Pérez E, Bedate F, Querol A. Asymptotically exact stabilization for constrained discrete Takagi–Sugeno systems via set-invariance. Fuzzy Sets Syst. 2017; 316: 117-138.
- 28Sala A. Generalising quasi-LPV and CDI models to quasi-convex difference inclusions. IFAC-PapersOnLine. 2017; 50(1): 7560-7565.
10.1016/j.ifacol.2017.08.1192 Google Scholar
- 29Sala A, Ariño C, Robles R. Gain-scheduled control via convex nonlinear parameter varying models. IFAC-PapersOnLine. 2019; 52(28): 70-75. 3rd IFAC Workshop on Linear Parameter Varying Systems LPVS 2019.
10.1016/j.ifacol.2019.12.350 Google Scholar
- 30Chesi G. Estimating the domain of attraction for non-polynomial systems via LMI optimizations. Automatica. 2009; 45(6): 1536-1541.
- 31Sala A, Pitarch JL. Optimisation of transient and ultimate inescapable sets with polynomial boundaries for nonlinear systems. Automatica. 2016; 73: 82-87.
- 32Fiacchini M, Prieur C, Tarbouriech S. Necessary and sufficient conditions for invariance of convex sets for discrete-time saturated systems. Paper presented at: Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy; 2013.
- 33Scherer CW. LMI relaxations in robust control. Europ J Control. 2006; 12(1): 3-29.
- 34González T, Bernal M, Sala A, Aguiar B. Cancellation-based nonquadratic controller design for nonlinear systems via Takagi-Sugeno models. IEEE Trans Cybern. 2017; 47(9): 2628-2638.
- 35Eppstein D. Quasiconvex programming. arXiv preprint; 2004. http://arxiv.org/abs/cs/0412046.
- 36Löfberg J. YALMIP: a toolbox for modeling and optimization in MATLAB. Paper presented at: Proceedings of the IEEE International Conference Robotics and Automation, The Grand Hotel, Taipei, Taiwan; 2004. https://doi.org/10.1109/CACSD.2004.1393890
Special Issue:Emerging Approaches for Nonlinear Parameter Varying (NLPV) Systems
25 November 2021
Pages 8124-8146