H∞ boundary control for a class of nonlinear stochastic parabolic distributed parameter systems
Xiu-Mei Zhang
The Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
Search for more papers by this authorCorresponding Author
Huai-Ning Wu
The Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
Huai-Ning Wu, The Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
Email: [email protected]
Search for more papers by this authorXiu-Mei Zhang
The Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
Search for more papers by this authorCorresponding Author
Huai-Ning Wu
The Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
Huai-Ning Wu, The Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
Email: [email protected]
Search for more papers by this authorSummary
This paper addresses the problem of H∞ boundary control for a class of nonlinear stochastic distributed parameter systems expressed by parabolic stochastic partial differential equations (SPDEs) of Itô type. A simple but effective H∞ boundary static output feedback (SOF) control scheme with collocated boundary measurement is introduced to ensure the local exponential stability in the mean square sense with an H∞ performance. By using the semigroup theory, the disturbance-free closed-loop well-posedness analysis is first given. Then, based on the SPDE model, a general linear matrix inequality based H∞ boundary SOF control design is provided via Lyapunov technique and infinite-dimensional infinitesimal operator, such that the disturbance-free closed-loop system is locally exponentially stable in the mean square sense and the H∞ performance of disturbance attenuation can also be achieved in the presence of disturbances. Finally, simulation results on a stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation illustrate the effectiveness of the proposed method.
REFERENCES
- 1Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Cambridge, UK: Cambridge University Press; 1992.
10.1017/CBO9780511666223 Google Scholar
- 2Liu K. Stability of Infinite Dimensional Stochastic Differential Equations with Applications. Boca Raton, FL: Chapman & Hall/CRC; 2006.
- 3Chow P-L. Stochastic Partial Differential Equations. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC; 2015.
- 4Hu G, Lou Y, Christofides PD. Dynamic output feedback covariance control of stochastic dissipative partial differential equations. Chem Eng Sci. 2008; 63: 4531-4542.
- 5Wang J-W, Wu H-N, Li H-X. Stochastically exponential stability and stabilization of uncertain linear hyperbolic PDE systems with Markov jumping parameters. Automatica. 2012; 48: 569-576.
- 6Green M, Limebeer DJN. Linear Robust Control. Englewood Cliffs, NJ: Prentice-Hall; 1995.
- 7Berman N, Shaked U. H∞-like control for nonlinear stochastic systems. Syst Control Lett. 2006; 55: 247-257.
- 8Li C, Zhao J. Robust passivity-based H∞ control for uncertain switched nonlinear systems. Int J Robust Nonlinear Control. 2016; 26(14): 3186-3206.
- 9Hinrichsen D, Pritchard AJ. Stochastic H∞. SIAM J Control Optim. 1998; 36: 1504-1538.
- 10Petersen IR, Ugrinovskii VA, Savkin AV. Robust Control Design Using H∞ Methods. Berlin, Germany: Springer; 2000.
10.1007/978-1-4471-0447-6 Google Scholar
- 11Zhang W, Chen B-S. State feedback H∞ control for a class of nonlinear stochastic systems. SIAM J Control Optim. 2006; 44(6): 1973-1991.
- 12Shaked U, Gershon E. Robust H∞ control of stochastic linear switched systems with dwell time. Int J Robust Nonlinear Control. 2014; 24(11): 1664-1676.
- 13Zhu J, Yu X, Zhang T, Cao Z, Yang Y, Yi Y. The mean-square stability probability of H∞ control of continuous Markovian jump systems. IEEE Trans Autom Control. 2016; 61(7): 1918-1924.
- 14van Keulen B. H∞-Control for Distributed Parameter Systems: A State-Space Approach. Basel, Switzerland: Birkhäuser; 1993.
10.1007/978-1-4612-0347-6 Google Scholar
- 15Wu H-N, Wang J-W, Li H-X. Design of distributed H∞ fuzzy controllers with constraint for nonlinear hyperbolic PDE systems. Automatica. 2012; 48(10): 2535-2543.
- 16Fridman E, Orlov Y. An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems. Automatica. 2009; 45(9): 2060-2066.
- 17Fridman E, Bar Am N. Sampled-data distributed H∞ control of transport reaction systems. SIAM J Control Optim. 2013; 51(2): 1500-1527.
- 18Wang Z-P, Wu H-N. H∞ sampled-data fuzzy control for nonlinear parabolic distributed parameter systems with control inputs missing. IET Control Theory Appl. 2017; 11: 1530-1541.
- 19Chen W-H, Chen B-S. Robust stabilization design for stochastic partial differential systems under spatio-temporal disturbances and sensor measurement noises. IEEE Trans Circuits Syst I Reg Pap. 2013; 60(4): 1013-1026.
- 20Chen W-H, Chen B-S, Zhang W. Robust control design for nonlinear stochastic partial differential systems with Poisson noise: fuzzy implementation. Fuzzy Set Syst. 2014; 254: 83-105.
- 21Wang D, Shen B, Wang Z, Alsaadi FE, Dobaie AM. Robust reliable h∞ control for uncertain stochastic spatial-temporal systems: the output feedback case. J Frankl Inst. 2015; 352(6): 2280-2296.
- 22Wu K-N, Wang J, Lim C-C. Synchronization of stochastic reaction-diffusion systems via boundary control. Nonlinear Dynamics. 2018; 94(3): 1763-1773.
- 23Wu K-N, Liu X-Z, Shi P, Lim C-C. Boundary control of linear stochastic reaction-diffusion systems. Int J Robust Nonlinear Control. 2019; 29(1): 268-282.
- 24Bošković DM, Krstic M, Liu W. Boundary control of an unstable heat equation via measurement of domain-averaged temperature. IEEE Trans Autom Control. 2001; 46: 2022-2028.
- 25Krstic M, Smyshlyaev A. Boundary Control of PDEs: A Course on Backstepping Design. Philadelphia, PA: SIAM; 2008.
10.1137/1.9780898718607 Google Scholar
- 26Hashimoto T, Krstic M. Stabilization of reaction diffusion equations with state delay using boundary control input. IEEE Trans Autom Control. 2016; 61: 4041-4047.
- 27Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York, NY: Springer-Verlag; 1983.
10.1007/978-1-4612-5561-1 Google Scholar
- 28Curtain RF, Zwart HJ. An Introduction to Infinite-Dimensional Linear Systems Theory. New York, NY: Springer-Verlag; 1995.
10.1007/978-1-4612-4224-6 Google Scholar
- 29Shen B, Tan H, Wang Z, Huang T. Quantized/saturated control for sampled-data systems under noisy sampling intervals: a confluent Vandermonde matrix approach. IEEE Trans Autom Control. 2017; 62(9): 4753-4759.
- 30Yuan Y, Wang Z, Zhang P, Dong H. Nonfragile near-optimal control of stochastic time-varying multiagent systems with control-and state-dependent noises. IEEE Trans Cybern. 2018. https://doi.org/10.1109/TCYB.2018.2829713
- 31Yuan Y, Wang Z, Zhang P, Liu H. Near-optimal resilient control strategy design for state-saturated networked systems under stochastic communication protocol. IEEE Trans Cybern. 2018. https://doi.org/10.1109/TCYB.2018.2840430
- 32Dawson DA, Salehi H. Spatially homogeneous random evolutions. J Multivar Anal. 1980; 10(2): 141-180.
- 33Barbu V, Cordoni F, Di Persio L. Optimal control of stochastic FitzHugh-Nagumo equation. Int J Control. 2016; 89(4): 746-756.
- 34Chen B-S, Hsieh C-Y, Ho S-J. System entropy measurement of stochastic partial differential systems. Entropy. 2016; 18(3): 1-30.
- 35Hardy GH, Littlewood JE, Pólya G. Inequalities. Cambridge, UK: Cambridge University Press; 1959.
- 36Gu K, Kharitonov VL, Chen J. Stability of Time-Delay Systems. Basel, Switzerland: Birkhäuser; 2003.
10.1007/978-1-4612-0039-0 Google Scholar
- 37Ichikawa A. Stability of semilinear stochastic evolution equations. J Math Anal Appl. 1982; 90(1): 12-44.
- 38Liu Z, Zheng S. Semigroups Associated with Dissipative Systems. Boca Raton, FL: Chapman & Hall/CRC; 1999.
- 39Gahinet P, Nemirovskii A, Laub AJ, Chilali M. LMI Control Toolbox: For Use with MATLAB. Natick, MA: The MathWorks; 1995.
- 40Guo B-Z, Wang J-M, Yang K-Y. Dynamic stabilization of an Euler-Bernoulli beam under boundary control and non-collocated observation. Syst Control Lett. 2008; 57: 704-749.
- 41Guo B-Z, Guo W. The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica. 2009; 45: 790-797.