Antioxidant/anti-inflammatory effect of Mg2+ in coronavirus disease 2019 (COVID-19)
Yalith Lyzet Arancibia-Hernández
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Search for more papers by this authorAna Karina Aranda-Rivera
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Search for more papers by this authorCorresponding Author
Alfredo Cruz-Gregorio
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Correspondence
José Pedraza-Chaverri and Alfredo Cruz-Gregorio, Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
José Pedraza-Chaverri
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Correspondence
José Pedraza-Chaverri and Alfredo Cruz-Gregorio, Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
Email: [email protected] and [email protected]
Search for more papers by this authorYalith Lyzet Arancibia-Hernández
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Search for more papers by this authorAna Karina Aranda-Rivera
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Search for more papers by this authorCorresponding Author
Alfredo Cruz-Gregorio
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Correspondence
José Pedraza-Chaverri and Alfredo Cruz-Gregorio, Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
José Pedraza-Chaverri
Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
Correspondence
José Pedraza-Chaverri and Alfredo Cruz-Gregorio, Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
Email: [email protected] and [email protected]
Search for more papers by this authorAbstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), characterised by high levels of inflammation and oxidative stress (OS). Oxidative stress induces oxidative damage to lipids, proteins, and DNA, causing tissue damage. Both inflammation and OS contribute to multi-organ failure in severe cases. Magnesium (Mg2+) regulates many processes, including antioxidant and anti-inflammatory responses, as well as the proper functioning of other micronutrients such as vitamin D. In addition, Mg2+ participates as a second signalling messenger in the activation of T cells. Therefore, Mg2+ deficiency can cause immunodeficiency, exaggerated acute inflammatory response, decreased antioxidant response, and OS. Supplementation with Mg2+ has an anti-inflammatory response by reducing the levels of nuclear factor kappa B (NF-κB), interleukin (IL) -6, and tumor necrosis factor alpha. Furthermore, Mg2+ supplementation improves mitochondrial function and increases the antioxidant glutathione (GSH) content, reducing OS. Therefore, Mg2+ supplementation is a potential way to reduce inflammation and OS, strengthening the immune system to manage COVID-19. This narrative review will address Mg2+ deficiency associated with a worse disease prognosis, Mg2+ supplementation as a potent antioxidant and anti-inflammatory therapy during and after COVID-19 disease, and suggest that randomised controlled trials are indicated.
CONFLICT OF INTEREST
All authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data is openly available in a public repository that issues datasets with https://pubmed.ncbi.nlm.nih.gov/.
REFERENCES
- 1 COVID-19 Map. Johns Hopkins Coronavirus Resource Center. Accessed August 21, 2021. https://coronavirus.jhu.edu/map.html
- 2Yang P, Wang X. COVID-19: a new challenge for human beings. Cell Mol Immunol. 2020; 17(5): 555-557. https://doi.org/10.1038/s41423-020-0407-x
- 3Alamdari NM, Afaghi S, Rahimi FS, et al. Mortality risk factors among hospitalized COVID-19 patients in a referral center in Iran. Tohoku J Exp Med. 2020; 252(1): 73-84. https://doi.org/10.1620/tjem.252.73
- 4de las Heras N, Martín Giménez VM, Ferder L, Manucha W, Lahera V. Implications of oxidative stress and potential role of mitochondrial dysfunction in COVID-19: therapeutic effects of vitamin D. Antioxidants. 2020; 9(9):897. https://doi.org/10.3390/antiox9090897
- 5Dizdar O, Baspınar O, Kocer D, et al. Nutritional risk, micronutrient status and clinical outcomes: a prospective observational study in an infectious disease clinic. Nutrients. 2016; 8(3):124. https://doi.org/10.3390/nu8030124
- 6Calder P, Carr A, Gombart A, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020; 12(4):1181. https://doi.org/10.3390/nu12041181
- 7Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients. 2020; 12(1):236. https://doi.org/10.3390/nu12010236
- 8Nielsen FH. Magnesium, inflammation, and obesity in chronic disease: nutrition Reviews©. Nutr Rev. 2010; 68(6): 333-340. https://doi.org/10.1111/j.1753-4887.2010.00293.x
- 9Maier JA, Castiglioni S, Locatelli L, Zocchi M, Mazur A. Magnesium and inflammation: advances and perspectives. Seminars Cell & Dev Biol. 2021; 115: 37-44. https://doi.org/10.1016/j.semcdb.2020.11.002
- 10Blache D, Devaux S, Joubert O, et al. Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic Biol Med. 2006; 41(2): 277-284. https://doi.org/10.1016/j.freeradbiomed.2006.04.008
- 11Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020; 79: 111017-111080. https://doi.org/10.1016/j.nut.2020.111017
- 12Trapani V, Rosanoff A, Baniasadi S, et al. The relevance of magnesium homeostasis in COVID-19. Eur J Nutr. 2022; 61(2): 625-636. https://doi.org/10.1007/s00394-021-02704-y
- 13Wallace TC. Combating COVID-19 and building immune resilience: a potential role for magnesium nutrition? J Am Coll Nutr. 2020; 39(8): 685-693. https://doi.org/10.1080/07315724.2020.1785971
- 14Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19 pandemic: is there a role for magnesium? Hypotheses and perspectives. Magnesium Res. 2020; 33(2): 21-27. https://doi.org/10.1684/mrh.2020.0465
- 15Qiao J, Li W, Bao J, et al. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem Biophys Res Commun. 2020; 533(4): 867-871. https://doi.org/10.1016/j.bbrc.2020.09.042
- 16Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020; 588(7838): 498-502. https://doi.org/10.1038/s41586-020-2665-2
- 17V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021; 19(3): 155-170. https://doi.org/10.1038/s41579-020-00468-6
- 18Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020; 12(1): 8. https://doi.org/10.1038/s41368-020-0074-x
- 19Ciaglia E, Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 levels: protective role in women and children. Front Pediatr. 2020; 8:206. https://doi.org/10.3389/fped.2020.00206
- 20Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
- 21Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir Res. 2020; 176:104742. https://doi.org/10.1016/j.antiviral.2020.104742
- 22Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem. 2021; 296:100306. https://doi.org/10.1016/j.jbc.2021.100306
- 23Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem. 2020; 295(37): 12910-12934. https://doi.org/10.1074/jbc.REV120.013930
- 24Klein S, Cortese M, Winter SL, et al. SARS-CoV-2 Structure and Replication Characterized by in Situ Cryo-Electron Tomography; 2020. https://doi.org/10.1101/2020.06.23.167064
10.1038/s41467-020-19619-7 Google Scholar
- 25Wong CK, Lam CWK, Wu AKL, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004; 136(1): 95-103. https://doi.org/10.1111/j.1365-2249.2004.02415.x
- 26Zhang Q, Meng Y, Wang K, et al. Inflammation and antiviral immune response associated with severe progression of COVID-19. Front Immunol. 2021; 12: 135. https://doi.org/10.3389/fimmu.2021.631226
- 27Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
- 28Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020; 9(1): 1123-1130. https://doi.org/10.1080/22221751.2020.1770129
- 29Yoshikawa T, Hill T, Li K, Peters CJ, Tseng CTK. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol. 2009; 83(7): 3039-3048. https://doi.org/10.1128/JVI.01792-08
- 30Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020; 71(15): 762-768. https://doi.org/10.1093/cid/ciaa248
- 31Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020; 35(3): 266-271. https://doi.org/10.1007/s12250-020-00207-4
- 32Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0
- 33Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. May. 2020; 6: 1-362. Published online. https://doi.org/10.1038/s41577-020-0331-4
10.1038/s41577?020?0331?4 Google Scholar
- 34Payen D, Cravat M, Maadadi H, et al. A longitudinal study of immune cells in severe COVID-19 patients. Front Immunol. 2020; 11:580250. https://doi.org/10.3389/fimmu.2020.580250
- 35Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020; 26(6): 842-844. https://doi.org/10.1038/s41591-020-0901-9
- 36Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
- 37Park J, Min JS, Kim B, et al. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett. 2015; 584: 191-196. https://doi.org/10.1016/j.neulet.2014.10.016
- 38Žarković N, Orehovec B, Milković L, et al. Preliminary findings on the association of the lipid peroxidation product 4-hydroxynonenal with the lethal outcome of aggressive COVID-19. Antioxidants. 2021; 10(9):1341. https://doi.org/10.3390/antiox10091341
- 39Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M. The comparison of oxidative markers between Covid-19 patients and healthy subjects. Arch Med Res. June 7, 2021. Published online. https://doi.org/10.1016/j.arcmed.2021.06.004
- 40Muhammad Y, Kani YA, Iliya S, et al. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: a cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021; 9:2050312121991246. https://doi.org/10.1177/2050312121991246
- 41Violi F, Oliva A, Cangemi R, et al. Nox2 activation in covid-19. Redox Biol. 2020; 36:101655. https://doi.org/10.1016/j.redox.2020.101655
- 42Youn JY, Zhang Y, Wu Y, Cannesson M, Cai H. Therapeutic application of estrogen for COVID-19: attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells. Redox Biol. 2021; 46:102099. https://doi.org/10.1016/j.redox.2021.102099
- 43Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63(3): 364-374. https://doi.org/10.1007/s11427-020-1643-8
- 44Dikalov SI, Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal. 2013; 19(10): 1085-1094. https://doi.org/10.1089/ars.2012.4604
- 45Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochimica Biophysica Acta (BBA) - Bioenergetics. 2010; 1797(6-7): 897-906. https://doi.org/10.1016/j.bbabio.2010.01.032
- 46de Baaij JHF, Hoenderop JGJ, Bindels RJM. Regulation of magnesium balance: lessons learned from human genetic disease. Clin Kidney J. 2012; 5(Suppl 1): i15-i24. https://doi.org/10.1093/ndtplus/sfr164
- 47Crosby V, Elin RJ, Twycross R, Mihalyo M, Wilcock A. Magnesium. J Pain Symptom Manag. 2013; 45(1): 137-144. https://doi.org/10.1016/j.jpainsymman.2012.10.005
- 48Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012; 5(Suppl 1): i3-i14. https://doi.org/10.1093/ndtplus/sfr163
- 49Vormann J. Magnesium: nutrition and homoeostasis. AIMS Public Health. 2016; 3(2): 329-340. https://doi.org/10.3934/publichealth.2016.2.329
- 50Bara M, Guiet-Bara A, Durlach J. Regulation of sodium and potassium pathways by magnesium in cell membranes. Magnes Res. 1993; 6(2): 167-177.
- 51Mahfouz MM, Smith TL, Kummerow FA. Changes in phosphofipid composition and calcium flux. Biochim Biophys Acta. 1989; 1006(1): 75-83. https://doi.org/10.1016/0005-2760(89)90325-1
- 52de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev. 2015; 95(1): 1-46. https://doi.org/10.1152/physrev.00012.2014
- 53Yang L, Arora K, Beard WA, Wilson SH, Schlick T. Critical role of magnesium ions in DNA polymerase β’s closing and active site assembly. J Am Chem Soc. 2004; 126(27): 8441-8453. https://doi.org/10.1021/ja049412o
- 54Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc. 2018; 118(3): 181-189. https://doi.org/10.7556/jaoa.2018.037
- 55Stangherlin A, O’Neill JS. Signal transduction: magnesium manifests as a second messenger. Curr Biol. 2018; 28(24): R1403-R1405. https://doi.org/10.1016/j.cub.2018.11.003
- 56Li FY, Chaigne-Delalande B, Kanellopoulou C, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011; 475(7357): 471-476. https://doi.org/10.1038/nature10246
- 57Rodrı́guez-Zavala JS, Moreno-Sánchez R. Modulation of oxidative phosphorylation by Mg2+ in rat heart mitochondria. J Biol Chem. 1998; 273(14): 7850-7855. https://doi.org/10.1074/jbc.273.14.7850
- 58Shahi A, Aslani S, Ataollahi M, Mahmoudi M. The role of magnesium in different inflammatory diseases. Inflammopharmacol. 2019; 27(4): 649-661. https://doi.org/10.1007/s10787-019-00603-7
- 59Brandao K, Deason-Towne F, Perraud AL, Schmitz C. The role of Mg2+ in immune cells. Immunol Res. 2013; 55(1): 261-269. https://doi.org/10.1007/s12026-012-8371-x
- 60Chaigne-Delalande B, Li FY, O’Connor GM, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013; 341(6142): 186-191. https://doi.org/10.1126/science.1240094
- 61DiNicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation. Mo Med. 2021; 118(1): 68-73.
- 62Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int. 2003; 72(1): 32-41. https://doi.org/10.1007/s00223-001-1091-1
- 63Castiglioni S, Cazzaniga A, Locatelli L, Maier JA. Burning magnesium, a sparkle in acute inflammation: gleams from experimental models. Magnesium Res. 2017; 30(1): 8-15. https://doi.org/10.1684/mrh.2017.0418
- 64Malpuech-Brugère C, Nowacki W, Daveau M, et al. Inflammatory response following acute magnesium deficiency in the rat. Biochimica Biophysica Acta (BBA) - Mol Basis Dis. 2000; 1501(2): 91-98. https://doi.org/10.1016/S0925-4439(00)00018-1
- 65Weglicki WB, Mak IT, Chmielinska JJ, Tejero-Taldo MI, Komarov AM, Kramer JH. The role of magnesium deficiency in cardiovascular and intestinal inflammation. Magnes Res. 2010; 23(4): S199-S206. https://doi.org/10.1684/mrh.2010.0218
- 66Bussière FI, Tridon A, Zimowska W, Mazur A, Rayssiguier Y. Increase in complement component C3 is an early response to experimental magnesium deficiency in rats. Life Sci. 2003; 73(4): 499-507. https://doi.org/10.1016/S0024-3205(03)00291-1
- 67Altura BM, Shah NC, Shah G, et al. Short-term magnesium deficiency upregulates ceramide synthase in cardiovascular tissues and cells: cross-talk among cytokines, Mg2+, NF-κB, and de novo ceramide. Am J Physiology-Heart Circulatory Physiology. 2012; 302(1): H319-H332. https://doi.org/10.1152/ajpheart.00453.2011
- 68Altura BM, Gebrewold A, Zhang A, Altura BT. Low extracellular magnesium ions induce lipid peroxidation and activation of nuclear factor-kappa B in canine cerebral vascular smooth muscle: possible relation to traumatic brain injury and strokes. Neurosci Lett. 2003; 341(3): 189-192. https://doi.org/10.1016/S0304-3940(03)00134-4
- 69Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. WIREs Syst Biol Med. 2016; 8(3): 227-241. https://doi.org/10.1002/wsbm.1331
- 70Zhang FX, Kirschning CJ, Mancinelli R, et al. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem. 1999; 274(12): 7611-7614. https://doi.org/10.1074/jbc.274.12.7611
- 71Mussbacher M, Salzmann M, Brostjan C, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol. 2019; 10:85. https://doi.org/10.3389/fimmu.2019.00085
- 72Quilliot D, Bonsack O, Jaussaud R, Mazur A. Dysmagnesemia in Covid-19 cohort patients: prevalence and associated factors. Magnesium Res. 2020; 33(4): 114-122. https://doi.org/10.1684/mrh.2021.0476
- 73Sugimoto J, Romani AM, Valentin-Torres AM, et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol. 2012; 188(12): 6338-6346. https://doi.org/10.4049/jimmunol.1101765
- 74Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Zambrano-Galvan G, Guerrero-Romero F. Effect of magnesium supplementation on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. CPD. 2017; 23(31). https://doi.org/10.2174/1381612823666170525153605
10.2174/1381612823666170525153605 Google Scholar
- 75Dai Q, Zhu X, Manson JE, et al. Magnesium status and supplementation influence vitamin D status and metabolism: results from a randomized trial. Am J Clin Nutr. 2018; 108(6): 1249-1258. https://doi.org/10.1093/ajcn/nqy274
- 76Reddy P, Edwards LR. Magnesium supplementation in vitamin D deficiency. Am J Ther. 2019; 26(1): e124-e132. https://doi.org/10.1097/MJT.0000000000000538
- 77Pachikian BD, Neyrinck AM, Deldicque L, et al. Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J Nutr. 2010; 140(3): 509-514. https://doi.org/10.3945/jn.109.117374
- 78García-Legorreta A, Soriano-Pérez LA, Flores-Buendía AM, et al. Effect of dietary magnesium content on intestinal microbiota of rats. Nutrients. 2020; 12(9):2889. https://doi.org/10.3390/nu12092889
- 79Gommers LMM, Ederveen THA, Wijst J, et al. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia. FASEB j. 2019; 33(10): 11235-11246. https://doi.org/10.1096/fj.201900839R
- 80Jørgensen BP, Winther G, Kihl P, et al. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice. Acta Neuropsychiatr. 2015; 27(5): 307-311. https://doi.org/10.1017/neu.2015.10
- 81Winther G, Pyndt Jørgensen BM, Elfving B, et al. Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour. Acta Neuropsychiatr. 2015; 27(3): 168-176. https://doi.org/10.1017/neu.2015.7
- 82Barnich N, Rodrigues M, Sauvanet P, et al. Beneficial effects of natural mineral waters on intestinal inflammation and the mucosa-associated microbiota. Int J Mol Sci. 2021; 22(9):4336. https://doi.org/10.3390/ijms22094336
- 83Crowley EK, Long-Smith CM, Murphy A, et al. Dietary supplementation with a magnesium-rich marine mineral blend enhances the diversity of gastrointestinal microbiota. Mar Drugs. 2018; 16(6):216. https://doi.org/10.3390/md16060216
- 84Olaimat AN, Aolymat I, Al-Holy M, et al. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. npj Sci Food. 2020; 4(1): 17. https://doi.org/10.1038/s41538-020-00078-9
- 85Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70(4): 698-706. https://doi.org/10.1136/gutjnl-2020-323020
- 86Kim HS. Do an altered gut microbiota and an associated leaky gut affect COVID-19 severity? mBio. 2021; 12(1): e03022-20. https://doi.org/10.1128/mBio.03022-20
- 87Hirayama M, Nishiwaki H, Hamaguchi T, et al. Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate. PLoS One. 2021; 16(11):e0260451. https://doi.org/10.1371/journal.pone.0260451
- 88Gasmi A, Tippairote T, Mujawdiya PK, et al. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin Immunol. 2021; 226:108725. https://doi.org/10.1016/j.clim.2021.108725
- 89Walton GE, Gibson GR, Hunter KA. Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. Br J Nutr. October 2020; 126: 1-227. Published online. https://doi.org/10.1017/S0007114520003980
- 90Del Chierico F, Trapani V, Petito V, et al. Dietary magnesium alleviates experimental murine colitis through modulation of gut microbiota. Nutrients. 2021; 13(12):4188. https://doi.org/10.3390/nu13124188
- 91Zhao J, Zhang Qli, Shen Jhua, Wang K, Liu J. Magnesium lithospermate B improves the gut microbiome and bile acid metabolic profiles in a mouse model of diabetic nephropathy. Acta Pharmacol Sin. 2019; 40(4): 507-513. https://doi.org/10.1038/s41401-018-0029-3
- 92Liu C, Cheng Y, Guo Y, Qian H. Magnesium-L-threonate alleviate colonic inflammation and memory impairment in chronic-plus-binge alcohol feeding mice. Brain Res Bull. 2021; 174: 184-193. https://doi.org/10.1016/j.brainresbull.2021.06.009
- 93Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014; 15(6): 411-421. https://doi.org/10.1038/nrm3801
- 94Wiles ME, Wagner TL, Weglicki WB. Effect of acute magnesium deficiency (MgD) on aortic endothelial cell (EC) oxidant production. Life Sci. 1996; 60(3): 221-236. https://doi.org/10.1016/S0024-3205(96)00619-4
- 95Nielsen FH, Milne DB, Klevay LM, Gallagher S, Johnson L. Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J Am Coll Nutr. 2007; 26(2): 121-132. https://doi.org/10.1080/07315724.2007.10719593
- 96Liu M, Dudley SC. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants. 2020; 9(10):907. https://doi.org/10.3390/antiox9100907
- 97Touyz RM. Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiology-Heart Circulatory Physiology. 2008; 294(3): H1103-H1118. https://doi.org/10.1152/ajpheart.00903.2007
- 98Beltrán-García J, Osca-Verdegal R, Pallardó FV, et al. Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants. 2020; 9(10):936. https://doi.org/10.3390/antiox9100936
- 99Abad C, Vargas FR, Zoltan T, et al. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia. Placenta. 2015; 36(2): 179-185. https://doi.org/10.1016/j.placenta.2014.11.008
- 100Morais JBS, Severo JS, Santos LRdos, et al. Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res. 2017; 176(1): 20-26. https://doi.org/10.1007/s12011-016-0793-1
- 101Orhan C, Er B, Deeh PBD, et al. Different sources of dietary magnesium supplementation reduces oxidative stress by regulation Nrf2 and NF-κB signaling pathways in high-fat diet rats. Biol Trace Elem Res. 2021; 199(11): 4162-4170. https://doi.org/10.1007/s12011-020-02526-9
- 102Gao F, Limeng J, Xi C, et al. Magnesium lithospermate B protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol Sin. 2019; 40(7): 867-878. https://doi.org/10.1038/s41401-018-0189-1
- 103Tan QY, Hu Q, Zhu SN, et al. Licorice root extract and magnesium isoglycyrrhizinate protect against triptolide-induced hepatotoxicity via up-regulation of the Nrf2 pathway. Drug Deliv 2018; 25(1): 1213-1223. https://doi.org/10.1080/10717544.2018.1472676
- 104Abreu CC, Cardozo LFMF, Stockler-Pinto MB, et al. Does resistance exercise performed during dialysis modulate Nrf2 and NF-κB in patients with chronic kidney disease? Life Sci. 2017; 188: 192-197. https://doi.org/10.1016/j.lfs.2017.09.007
- 105Minnich V, Smith MB, Brauner MJ, Majerus PW. Glutathione biosynthesis in human erythrocytes: I. Identification of the enzymes of glutathione synthesis in hemolysates. J Clin Invest. 1971; 50(3): 507-513. https://doi.org/10.1172/JCI106519
- 106Hsu JM, Rubenstein B, Paleker AG. Role of magnesium in glutathione metabolism of rat erythrocytes. J Nutr. 1982; 112(3): 488-496. https://doi.org/10.1093/jn/112.3.488
- 107Nielsen FH. Dietary magnesium and chronic disease. Adv Chronic Kidney Dis. 2018; 25(3): 230-235. https://doi.org/10.1053/j.ackd.2017.11.005
- 108Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ. 2009; 16(10): 1303-1314. https://doi.org/10.1038/cdd.2009.107
- 109Oestreicher J, Morgan B. Glutathione: subcellular distribution and membrane transport. Biochem Cell Biol. 2019; 97(3): 270-289. https://doi.org/10.1139/bcb-2018-0189
- 110Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020; 21(7): 363-383. https://doi.org/10.1038/s41580-020-0230-3
- 111Riso P, Del Bo’ C, Vendrame S, et al. Modulation of plasma antioxidant levels, glutathione S-transferase activity and DNA damage in smokers following a single portion of broccoli: a pilot study. J Sci Food Agric. 2014; 94(3): 522-528. https://doi.org/10.1002/jsfa.6283
- 112Schmuck EM, Board PG, Whitbread AK, et al. Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer’s and Parkinson’s diseases. Pharmacogenetics Genomics. 2005; 15(7): 493-501. https://doi.org/10.1097/01.fpc.0000165725.81559.e3
- 113 BRENDA - Information on EC 6.3.2.2 - Glutamate-Cysteine Ligase. Accessed October 2, 2021. https://www.brenda-enzymes.org/enzyme.php?ecno=6.3.2.2
- 114 BRENDA - Information on EC 6.3.2.3 - Glutathione Synthase. Accessed October 2, 2021. https://www.brenda-enzymes.org/enzyme.php?ecno=6.3.2.3
- 115Zhang H, Jay Forman H, Choi J. γ-Glutamyl transpeptidase in glutathione biosynthesis. In: Methods in Enzymology. 401. Elsevier; 2005: 468-483. https://doi.org/10.1016/S0076-6879(05)01028-1
- 116Ige AO, Adewoye EO, Makinde EO. Oral magnesium potentiates glutathione activity in experimental diabetic rats. Int J Diab Res. 2016; 5(2): 21-25.
- 117 BRENDA - Information on EC 2.3.2.2 - Gamma-Glutamyltransferase. Accessed October 2, 2021. https://www.brenda-enzymes.org/enzyme.php?ecno=2.3.2.2#GENERAL%20INFORMATION
- 118Mohammadi H, Shamshirian A, Eslami S, Shamshirian D, Ebrahimzadeh MA. Magnesium sulfate attenuates lethality and oxidative damage induced by different models of hypoxia in mice. In: A Bunevicius, ed. BioMed Res Int. 2020; 2020: 1-8. https://doi.org/10.1155/2020/2624734
- 119Liu M, Jeong EM, Liu H, et al. Magnesium supplementation improves diabetic mitochondrial and cardiac diastolic function. JCI Insight. 2019; 4(1):e123182. https://doi.org/10.1172/jci.insight.123182
- 120Kawasaki K, Kondoh E, Chigusa Y, et al. Metabolomic profiles of placenta in preeclampsia. Hypertension. 2019; 73(3): 671-679. https://doi.org/10.1161/HYPERTENSIONAHA.118.12389
- 121Martin H, Uring-Lambert B, Adrian M, et al. Effects of long-term dietary intake of magnesium on oxidative stress, apoptosis and ageing in rat liver. Magnes Res. 2008; 21(2): 124-130.
- 122Morais JBS, Severo JS, de Oliveira ARS, et al. Magnesium status and its association with oxidative stress in obese women. Biol Trace Elem Res. 2017; 175(2): 306-311. https://doi.org/10.1007/s12011-016-0797-x
- 123Fang X, Han H, Li M, et al. Dose-response relationship between dietary magnesium intake and risk of type 2 diabetes mellitus: a systematic review and meta-regression analysis of prospective cohort studies. Nutrients. 2016; 8(11):739. https://doi.org/10.3390/nu8110739
- 124Abbott RD, Ando F, Masaki KH, et al. Dietary magnesium intake and the future risk of coronary heart disease (The Honolulu Heart Program). Am J Cardiol. 2003; 92(6): 665-669. https://doi.org/10.1016/S0002-9149(03)00819-1
- 125Fang X, Wang K, Han D, et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies. BMC Med. 2016; 14: 210. https://doi.org/10.1186/s12916-016-0742-z
- 126Piuri G, Zocchi M, Della Porta M, et al. Magnesium in obesity, metabolic syndrome, and type 2 diabetes. Nutrients. 2021; 13(2):320. https://doi.org/10.3390/nu13020320
- 127Gold MS, Sehayek D, Gabrielli S, Zhang X, McCusker C, Ben-Shoshan M. COVID-19 and comorbidities: a systematic review and meta-analysis. PGM (Postgrad Med). 2020; 132(8): 749-755. https://doi.org/10.1080/00325481.2020.1786964
- 128Al Alawi AM, Majoni SW, Falhammar H. Magnesium and human health: perspectives and research directions. Int J Endocrinol. 2018; 2018: 9041694-17. https://doi.org/10.1155/2018/9041694
- 129McCarty MF. Magnesium may mediate the favorable impact of whole grains on insulin sensitivity by acting as a mild calcium antagonist. Med Hypotheses. 2005; 64(3): 619-627. https://doi.org/10.1016/j.mehy.2003.10.034
- 130Fung TT, Hu FB, Pereira MA, et al. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am J Clin Nutr. 2002; 76(3): 535-540. https://doi.org/10.1093/ajcn/76.3.535
- 131Glasdam SM, Glasdam S, Peters GH. The importance of magnesium in the human body: a systematic literature review. Adv Clin Chem. 2016; 73: 169-193. https://doi.org/10.1016/bs.acc.2015.10.002
- 132Arshad MS, Khan U, Sadiq A, et al. Coronavirus disease (COVID-19) and immunity booster green foods: a mini review. Food Sci Nutr. 2020; 8(8): 3971-3976. https://doi.org/10.1002/fsn3.1719
- 133 FoodData Central. Accessed October 29, 2021. https://fdc.nal.usda.gov/
- 134Kopf JC, Suhr MJ, Clarke J, et al. Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: a randomized controlled trial. Nutr J. 2018; 17(1): 72. https://doi.org/10.1186/s12937-018-0381-7
- 135Yoo EH, Chang SH, Song D-Y, et al. Comprehensive laboratory data analysis to predict the clinical severity of coronavirus disease 2019 in 1,952 patients in Daegu, Korea. Annals Lab Med. 2022; 42(1): 24-35. https://doi.org/10.3343/alm.2022.42.1.24
- 136Guimarães LMF, Rossini CVT, Lameu C. Implications of SARS-Cov-2 infection on eNOS and iNOS activity: consequences for the respiratory and vascular systems. Nitric Oxide. 2021; 111-112: 64-71. https://doi.org/10.1016/j.niox.2021.04.003
- 137Su B, Liu T, Fan H, et al. Inflammatory markers and the risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. PLOS ONE. 2016; 11(4):e0150586. https://doi.org/10.1371/journal.pone.0150586
- 138Yang Q, Shigemura N, Underwood MJ, et al. NO and EDHF pathways in pulmonary arteries and veins are impaired in COPD patients. Vasc Pharmacol. 2012; 57(2): 113-118. https://doi.org/10.1016/j.vph.2012.05.004
- 139Rahman I, van Schadewijk AAM, Crowther AJL, et al. 4-Hydroxy-2-Nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002; 166(4): 490-495. https://doi.org/10.1164/rccm.2110101
- 140Pasini AMF, Ferrari M, Stranieri C, et al. Nrf2 expression is increased in peripheral blood mononuclear cells derived from mild–moderate ex-smoker COPD patients with persistent oxidative stress. COPD. 2016; 11(1): 1733-1743. https://doi.org/10.2147/COPD.S102218
- 141Yamada K, Asai K, Nagayasu F, et al. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med. 2016; 16: 27. https://doi.org/10.1186/s12890-016-0189-1
- 142Hashim Ali Hussein S, Nielsen LP, Konow Bøgebjerg Dolberg M, Dahl R. Serum magnesium and not vitamin D is associated with better QoL in COPD: a cross-sectional study. Respir Med. 2015; 109(6): 727-733. https://doi.org/10.1016/j.rmed.2015.03.005
- 143Mukerji S, Shahpuri B, Clayton-Smith B, et al. Intravenous magnesium sulphate as an adjuvant therapy in acute exacerbations of chronic obstructive pulmonary disease: a single centre, randomised, double-blinded, parallel group, placebo- controlled trial: a pilot study. Randomized Controlled Trial. 2015; 128(1425): 9.
- 144Irazuzta JE, Chiriboga N. Magnesium sulfate infusion for acute asthma in the emergency department. J Pediatr. 2017; 93: 19-25. https://doi.org/10.1016/j.jped.2017.06.002
- 145Cheuk D, Chau T, Lee S. A meta-analysis on intravenous magnesium sulphate for treating acute asthma. Arch Dis Child. 2005; 90(1): 74-77. https://doi.org/10.1136/adc.2004.050005
- 146Shan Z, Rong Y, Yang W, et al. Intravenous and nebulized magnesium sulfate for treating acute asthma in adults and children: a systematic review and meta-analysis. Respir Med. 2013; 107(3): 321-330. https://doi.org/10.1016/j.rmed.2012.12.001
- 147Dubé BP, Dres M. Diaphragm dysfunction: diagnostic approaches and management strategies. J Clin Med. 2016; 5(12):113. https://doi.org/10.3390/jcm5120113
- 148Supinski GS, Morris PE, Dhar S, Callahan LA. Diaphragm dysfunction in critical illness. Chest. 2018; 153(4): 1040-1051. https://doi.org/10.1016/j.chest.2017.08.1157
- 149McCool FD, Tzelepis GE. Dysfunction of the diaphragm. N. Engl J Med. 2012; 366(10): 932-942. https://doi.org/10.1056/NEJMra1007236
- 150Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010; 14(4):R127. https://doi.org/10.1186/cc9094
- 151van Steveninck AL, Imming LM. Diaphragm dysfunction prior to intubation in a patient with Covid-19 pneumonia; assessment by point of care ultrasound and potential implications for patient monitoring. Respiratory Med Case Reports. 2020; 31:101284. https://doi.org/10.1016/j.rmcr.2020.101284
- 152Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Webster NR. Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J Pineal Res. 2014; 56(4): 427-438. https://doi.org/10.1111/jpi.12134
- 153Arnalich F, Garcia-Palomero E, López J, et al. Predictive value of nuclear factor κB activity and plasma cytokine levels in patients with sepsis. Infect Immun. 2000; 68(4): 1942-1945.
- 154Demoule A, Jung B, Prodanovic H, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact—a prospective study. Am J Respir Crit Care Med. 2013; 188(2): 213-219. https://doi.org/10.1164/rccm.201209-1668OC
- 155Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK. Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiology. 2010; 108(5): 1376-1382. https://doi.org/10.1152/japplphysiol.00098.2010
- 156Janssen SPM, Gayan-Ramirez G, Van Den Bergh A, et al. Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation. 2005; 111(8): 996-1005. https://doi.org/10.1161/01.CIR.0000156469.96135.0D
- 157Li X, Moody MR, Engel D, et al. Cardiac-specific overexpression of tumor necrosis factor-α causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation. 2000; 102(14): 1690-1696. https://doi.org/10.1161/01.CIR.102.14.1690
- 158Jiang J, Chen Q, Chen X, Li J, Li S, Yang B. Magnesium sulfate ameliorates sepsis-induced diaphragm dysfunction in rats via inhibiting HMGB1/TLR4/NF-κB pathway. Neuroreport. 2020; 31(12): 902-908. https://doi.org/10.1097/WNR.0000000000001478
- 159Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thrombosis Haemostasis. 2020; 18(7): 1738-1742. https://doi.org/10.1111/jth.14850
- 160Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010; 38: S26-S34. https://doi.org/10.1097/CCM.0b013e3181c98d21
- 161Asakura H, Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol. 2021; 113(1): 45-57. https://doi.org/10.1007/s12185-020-03029-y
- 162Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thrombosis Haemostasis. 2020; 18(9): 2103-2109. https://doi.org/10.1111/jth.14975
- 163Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844-847. https://doi.org/10.1111/jth.14768
- 164Lau FH, Majumder R, Torabi R, et al. Vitamin D Insufficiency Is Prevalent in Severe COVID-19; 2020. Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2020.04.24.20075838
10.1101/2020.04.24.20075838 Google Scholar
- 165Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M. The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacol. 2021; 29(1): 91-100. https://doi.org/10.1007/s10787-020-00773-9
- 166Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020; 52(5): 731-733. https://doi.org/10.1016/j.immuni.2020.04.003
- 167Spronk HMH, Govers-Riemslag JWP, ten Cate H. The blood coagulation system as a molecular machine. BioEssays. 2003; 25(12): 1220-1228. https://doi.org/10.1002/bies.10360
- 168Gromova OA, Torshin IY, Kobalava ZD, et al. Deficit of magnesium and states of hypercoagulation: intellectual analysis of data obtained from a sample of patients aged 18-50 years from medical and preventive facilities in Russia. Kardiologiia. 2018; 58(4): 22-35. https://doi.org/10.18087/cardio.2018.4.10106
- 169Mannuß S, Schuff-Werner P, Dreißiger K, Kohlschein P. Magnesium sulfate as an alternative in vitro anticoagulant for the measurement of platelet parameters? Am J Clin Pathology. 2016; 145(6): 806-814. https://doi.org/10.1093/ajcp/aqw066
- 170Sobczak AIS, Phoenix FA, Pitt SJ, Ajjan RA, Stewart AJ. Reduced plasma magnesium levels in type-1 diabetes associate with prothrombotic changes in fibrin clotting and fibrinolysis. Thromb Haemost. 2020; 120(02): 243-252. https://doi.org/10.1055/s-0039-3402808
- 171Vadivel K, Agah S, Messer AS, et al. Structural and functional studies of γ-carboxyglutamic acid domains of factor VIIa and activated protein C: role of magnesium at physiological calcium. J Mol Biol. 2013; 425(11): 1961-1981. https://doi.org/10.1016/j.jmb.2013.02.017
- 172Jankun J, Skrzypczak-Jankun E, Lipinski B. Experimental immunology Complex function of magnesium in blood clot formation and lysis. cejoi. 2013; 2: 149-153. https://doi.org/10.5114/ceji.2013.35203
10.5114/ceji.2013.35203 Google Scholar
- 173Demopoulos C, Antonopoulou S, Theoharides TC. COVID-19, microthromboses, inflammation, and platelet activating factor. BioFactors. 2020; 46(6): 927-933. https://doi.org/10.1002/biof.1696
- 174Altura BM, Li W, Zhang A, et al. The expression of platelet-activating factor is induced by low extracellular Mg2+ in aortic, cerebral and neonatal coronary vascular smooth muscle; cross talk with ceramide production, NF–kB and proto-oncogenes: possible links to atherogenesis and sudden cardiac death in children and infants, and aging; hypothesis, review and viewpoint. IJCRR. Publ online March. 2016; 31: 47-67. https://doi.org/10.19070/2470-4563-1600011
10.19070/2470?4563?1600011 Google Scholar
- 175Altura B, Gebrewold A, Shah G, Shah N, Altura B. Potential roles of magnesium deficiency in inflammation and atherogenesis: importance and cross-talk of platelet-activating factor and ceramide. J Clin Exp Cardiolog. 2016; 07(03). https://doi.org/10.4172/2155-9880.1000427
10.4172/2155?9880.1000427 Google Scholar
- 176Kamal M, Abo Omirah M, Hussein A, Saeed H. Assessment and characterisation of post-COVID-19 manifestations. Int J Clin Pract. 2021; 75(3):e13746. https://doi.org/10.1111/ijcp.13746
- 177Mandal S, Barnett J, Brill SE, et al. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021; 76(4): 396-398. https://doi.org/10.1136/thoraxjnl-2020-215818
- 178Carfì A, Bernabei R, Landi F. For the gemelli against COVID-19 post-acute care study group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020; 324(6): 603-605. https://doi.org/10.1001/jama.2020.12603
- 179Cares-Marambio K, Montenegro-Jiménez Y, Torres-Castro R, et al. Prevalence of potential respiratory symptoms in survivors of hospital admission after coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Chron Respir Dis. 2021; 18:14799731211002240. https://doi.org/10.1177/14799731211002240
- 180Iqbal FM, Lam K, Sounderajah V, Clarke JM, Ashrafian H, Darzi A. Characteristics and predictors of acute and chronic post-COVID syndrome: a systematic review and meta-analysis. EClinicalMedicine. 2021; 36:100899. https://doi.org/10.1016/j.eclinm.2021.100899
- 181Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: a cross-sectional evaluation. J Med Virology. 2021; 93(2): 1013-1022. https://doi.org/10.1002/jmv.26368
- 182Castro-Marrero J, Cordero MD, Sáez-Francas N, et al. Could mitochondrial dysfunction Be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxidants Redox Signal. 2013; 19(15): 1855-1860. https://doi.org/10.1089/ars.2013.5346
- 183Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009; 2(1): 1-16.
- 184Farr E, Wolfe AR, Deshmukh S, et al. Diaphragm dysfunction in severe COVID-19 as determined by neuromuscular ultrasound. Annals Clin & Trans Neurol. 2021; 8(8): 1745-1749. https://doi.org/10.1002/acn3.51416
- 185Satturwar S, Fowkes M, Farver C, et al. Postmortem findings associated with SARS-CoV-2: systematic review and meta-analysis. Am J Surg Pathology. 2021; 45(5): 587-603. https://doi.org/10.1097/PAS.0000000000001650