Epitope mapping of neutralising anti-SARS-CoV-2 monoclonal antibodies: Implications for immunotherapy and vaccine design
Somayeh Ghotloo
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
Search for more papers by this authorFaezeh Maghsood
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorForough Golsaz-Shirazi
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorMohammad Mehdi Amiri
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorChristiane Moog
Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
Search for more papers by this authorCorresponding Author
Fazel Shokri
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Correspondence
Fazel Shokri, Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorSomayeh Ghotloo
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
Search for more papers by this authorFaezeh Maghsood
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorForough Golsaz-Shirazi
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorMohammad Mehdi Amiri
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Search for more papers by this authorChristiane Moog
Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
Search for more papers by this authorCorresponding Author
Fazel Shokri
Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Correspondence
Fazel Shokri, Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorSomayeh Ghotloo and Faezeh Maghsood contributed equally to this manuscript
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. This disease has currently affected more than 346 million people and resulted in more than 5.5 million deaths in many countries. Neutralising monoclonal antibodies (MAbs) against the SARS-CoV-2 virus could serve as prophylactic/therapeutic agents in COVID-19 infection by providing passive protection against the virus in individuals. Until now, no Food and Drug Administration/European Medicines Agency-approved neutralising MAb against SARS-CoV-2 virus exists in the market, though a number of MAbs have been authorised for emergency use. Therefore, there is an urgent need for development of efficient anti-SARS-CoV-2 neutralising MAbs for use in the clinic. Moreover, neutralising anti-SARS-CoV-2 MAbs could be used as beneficial tools for designing epitope-based vaccines against the virus. Given that the target epitope of a MAb is a crucial feature influencing its neutralising potency, target epitopes of neutralising anti-SARS-CoV-2 MAbs already reported in the literature and reactivity of these MAbs with SARS-CoV-2 variants are reviewed herein.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- 1 WHO. Coronavirus Disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
- 2 Weekly Epidemiological Update on COVID-19 - 25 January 2022. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2022
- 3 Actemra EUA Letter of Authorization. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-treatment-covid-19
- 4 U.S. Food and Drug Administration. Center for Drug Evaluation and Research FDA Briefing Document Antimicrobial Drugs Advisory Committee Meeting November. 30; 2021. https://www.fda.gov/media/154418/download
- 5 Paxlovid EUA Letter of Authorization. https://www.fda.gov/media/155049/download
- 6 Therapeutics and COVID-19: Living Guideline. https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.2
- 7 Baricitinib Letter of Authorization. https://www.fda.gov/media/143822/download
- 8 FDA Authorizes Bamlanivimab and Etesevimab Monoclonal Antibody Therapy for Post-exposure Prophylaxis (Prevention) for COVID-19. https://www.fda.gov/drugs/drug-safety-and-availability/fda-authorizes-bamlanivimab-and-etesevimab-monoclonal-antibody-therapy-post-exposure-prophylaxis
- 9Casirivimab, Imdevimab EUA Letter of Authorization. https://www.fda.gov/media/143891/download
- 10 Sotrovimab EUA Letter of Authorization. https://www.fda.gov/media/149532/download
- 11Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. COVID-19 pandemic: insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020; 16(8):e1008762. https://doi.org/10.1371/journal.ppat.1008762
- 12Huang Y, Yang C, Xu X-f, Xu W, Liu S-w. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020; 41(9): 1141-1149. https://doi.org/10.1038/s41401-020-0485-4
- 13Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807): 215-220. https://doi.org/10.1038/s41586-020-2180-5
- 14Yi C, Sun X, Ye J, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol. 2020; 17(6): 621-630. https://doi.org/10.1038/s41423-020-0458-z
- 15Bhalla V, Blish CA, South AM. A historical perspective on ACE2 in the COVID-19 era. J Hum Hypertens. 2020; 35: 935-939. https://doi.org/10.1038/s41371-020-00459-3
- 16Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271-280. e8. https://doi.org/10.1016/j.cell.2020.02.052
- 17Cameroni E, Bowen JE, Rosen LE, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 2021; 602: 664-670. https://doi.org/10.1038/s41586-021-04386-2
- 18Barros EP, Casalino L, Gaieb Z, et al. The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophysical J. 2021; 120(6): 1072-1084. https://doi.org/10.1016/j.bpj.2020.10.036
- 19Gur M, Taka E, Yilmaz SZ, Kilinc C, Aktas U, Golcuk M. Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. J Chem Phys. 2020; 153(7):075101. https://doi.org/10.1063/5.0011141
- 20Jaimes JA, Millet JK, Whittaker GR. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience. 2020; 23(6):101212. https://doi.org/10.1016/j.isci.2020.101212
- 21Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020; 11(1): 1620. https://doi.org/10.1038/s41467-020-15562-9
- 22Maghsood F, Hassani D, Salimi V, et al. Differential antibody response to SARS-CoV-2 antigens in recovered and deceased Iranian COVID-19 patients. Viral Immunol 2021; 34(10): 708-713. https://doi.org/10.1089/vim.2021.0061
- 23Hassani D, Amiri MM, Maghsood F, et al. Does prior immunization with measles, mumps, and rubella vaccines contribute to the antibody response to COVID-19 antigens? Iranian J Immunol. 2021; 18(1): 47-53. https://doi.org/10.22034/iji.2021.87990.1843
- 24Chen X, Pan Z, Yue S, et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct Target Ther. 2020; 5(1): 1-6.
- 25Ko J-H, Joo E-J, Park S-J, et al. Neutralizing antibody production in asymptomatic and mild COVID-19 patients, in comparison with pneumonic COVID-19 patients. J Clin Med. 2020; 9(7): 2268.
- 26Kong W-H, Zhao R, Zhou J-B, et al. Serologic response to SARS-CoV-2 in COVID-19 patients with different severity. Virol Sin. 2020; 35(6): 752-757.
- 27Long Q-X, Tang X-J, Shi Q-L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020; 26(8): 1200-1204.
- 28Abbas A, Lichtman A, Pillai S. Cellular and Molecular Immunology. 9 ed. Elsevier; 2017.
- 29Pelletier JPR, Mukhtar F. Passive monoclonal and polyclonal antibody therapies. Immunologic Concepts in Transfusion Medicine; 2020: 251-348. https://doi.org/10.1016/B978-0-323-67509-3.00016-0
10.1016/B978-0-323-67509-3.00016-0 Google Scholar
- 30 MyoClinic. Convalescent Plasma Therapy. https://www.mayoclinic.org/tests-procedures/convalescent-plasma-therapy/about/pac-20486440
- 31 FDA. Recommendations for Investigational COVID-19 Convalescent Plasma. 2021.
- 32Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020; 584(7821): 437-442. https://doi.org/10.1038/s41586-020-2456-9
- 33Rogers TF, Zhao F, Huang D, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020; 369(6506): 956-963. https://doi.org/10.1126/science.abc7520
- 34Liu L, Wang P, Nair MS, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020; 584(7821): 450-456. https://doi.org/10.1038/s41586-020-2571-7
- 35Liu X, Gao F, Gou L, et al. Neutralizing antibodies isolated by a site-directed screening have potent protection on SARS-CoV-2 infection. bioRxiv. 2020:2020.05.03.074914. https://doi.org/10.1101/2020.05.03.074914
10.1101/2020.05.03.074914 Google Scholar
- 36Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020; 369(6505): 812-817. https://doi.org/10.1126/science.abc4776
- 37Lang AB, Cryz SJ, Jr., Schurch U, Ganss MT, Bruderer U. Immunotherapy with human monoclonal antibodies. Fragment A specificity of polyclonal and monoclonal antibodies is crucial for full protection against tetanus toxin. J Immunol. 1993; 151(1): 466-472.
- 38Kamei M, Hashizume S, Sugimoto N, Ozutsumi K, Matsuda M. Establishment of stable mouse/human-human hybrid cell lines producing large amounts of anti-tetanus human monoclonal antibodies with high neutralizing activity. Eur J Epidemiol. 1990; 6(4): 386-397. https://doi.org/10.1007/bf00151713
- 39 Coronavirus FDA. COVID-19 Update: FDA Authorizes Additional Monoclonal Antibody for Treatment of COVID-19. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-monoclonal-antibody-treatment-covid-19
- 40 Coronavirus FDA. COVID-19 Update: FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19; 2020.
- 41Nilvebrant J, Rockberg J. An introduction to epitope mapping. Methods Mol Biol. 2018; 1785: 1-10. https://doi.org/10.1007/978-1-4939-7841-0_1
- 42Gershoni JM, Roitburd-Berman A, Siman-Tov DD, Tarnovitski Freund N, Weiss Y. Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs Clin Immunother Biopharm Gene Ther. 2007; 21(3): 145-156. https://doi.org/10.2165/00063030-200721030-00002
- 43Maghsood F, Shokri MR, Jeddi-Tehrani M, et al. Identification of immunodominant epitopes on nucleocapsid and spike proteins of the SARS-CoV-2 in Iranian COVID-19 patients. Pathog Dis. 2022; 80. https://doi.org/10.1093/femspd/ftac001
- 44Chen X, Pan Z, Yue S, et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct Target Ther. Sep 2 2020; 5(1): 180. https://doi.org/10.1038/s41392-020-00301-9
- 45Zost SJ, Gilchuk P, Chen RE, et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med. 2020; 26(9): 1422-1427. https://doi.org/10.1038/s41591-020-0998-x
- 46Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell. 2020; 182(1): 73-84. e16. https://doi.org/10.1016/j.cell.2020.05.025
- 47Barnes CO, West AP, Jr., Huey-Tubman KE, et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell. 2020; 182(4): 828-842. e16. https://doi.org/10.1016/j.cell.2020.06.025
- 48Barnes CO, Jette CA, Abernathy ME, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 2020; 588: 682-687. https://doi.org/10.1038/s41586-020-2852-1
- 49Kreye J, Reincke SM, Kornau H-C, et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung Pathology in a COVID-19 hamster model. Cell. 2020; 183(4): 1058-1069. e19. https://doi.org/10.1016/j.cell.2020.09.049
- 50Noy-Porat T, Makdasi E, Alcalay R, et al. A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. Nat Commun. 2020; 11(1): 4303. https://doi.org/10.1038/s41467-020-18159-4
- 51Zost SJ, Gilchuk P, Case JB, et al Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. bioRxiv: The Preprint Server for Biology. 2020:2020.05.22.111005. https://doi.org/10.1101/2020.05.22.111005
- 52Zeng X, Li L, Lin J, et al. Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy. Antibody Therapeutics. 2020; 3(2): 95-100. https://doi.org/10.1093/abt/tbaa008
- 53Chen P, Nirula A, Heller B, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with covid-19. N. Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2029849
- 54Jones BE, Brown-Augsburger PL, Corbett KS, et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med. 2021(593): 13. https://doi.org/10.1126/scitranslmed.abf1906
- 55 Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Monoclonal Antibody Bamlanivimab. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-monoclonal-antibody-bamlanivimab
- 56Lim H, Baek A, Kim J, et al. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interaction obtained by density functional tight binding fragment molecular orbital method. Sci Rep. 2020; 10(1):16862. https://doi.org/10.1038/s41598-020-73820-8
- 57Othman H, Bouslama Z, Brandenburg J-T, et al. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem Biophys Res Commun. 2020; 527(3): 702-708. https://doi.org/10.1016/j.bbrc.2020.05.028
- 58Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581(7807): 221-224. https://doi.org/10.1038/s41586-020-2179-y
- 59Kim C, Ryu D-K, Lee J, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun. 2021; 12(1): 288. https://doi.org/10.1038/s41467-020-20602-5
- 60Wu Y, Wang F, Shen C, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 2020; 368(6496): 1274-1278. https://doi.org/10.1126/science.abc2241
- 61Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020; 584(7819): 115-119. https://doi.org/10.1038/s41586-020-2380-z
- 62Murphy AJ, Macdonald LE, Stevens S, et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A. 2014; 111(14): 5153-5158. https://doi.org/10.1073/pnas.1324022111
- 63Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020; 369(6506): 1010-1014. https://doi.org/10.1126/science.abd0827
- 64Dong J, Zost SJ, Greaney AJ, et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat Microbiol. 2021; 6(10): 1233-1244. https://doi.org/10.1038/s41564-021-00972-2
- 65Wang S, Peng Y, Wang R, et al. Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys. Nat Commun. 2020; 11(1):5752. https://doi.org/10.1038/s41467-020-19568-1
- 66Ghotloo S, Amiri MM, Khoshnoodi J, et al. Contribution of Fc fragment of monoclonal antibodies to tetanus toxin neutralization. Neurotox Res. 2020; 37(3): 578-586. https://doi.org/10.1007/s12640-019-00124-9
- 67Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020; 584(7819): 120-124. https://doi.org/10.1038/s41586-020-2381-y
- 68Tai W, Zhang X, He Y, Jiang S, Du L. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antivir Res. 2020; 179:104820. https://doi.org/10.1016/j.antiviral.2020.104820
- 69Fedry J, Hurdiss DL, Wang C, et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci Adv. 2021; 7(23). https://doi.org/10.1126/sciadv.abf5632
- 70Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020; 11(1): 2251. https://doi.org/10.1038/s41467-020-16256-y
- 71Pinto D, Park Y-J, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020; 583(7815): 290-295. https://doi.org/10.1038/s41586-020-2349-y
- 72Zhou D, Duyvesteyn HME, Chen CP, et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol. 2020; 27(10): 950-958. https://doi.org/10.1038/s41594-020-0480-y
- 73Lv Z, Deng YQ, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science. 2020; 369(6510): 1505-1509. https://doi.org/10.1126/science.abc5881
- 74Chi X, Yan R, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020; 369(6504): 650-655. https://doi.org/10.1126/science.abc6952
- 75Brouwer PJM, Caniels TG, van der Straten K, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020; 369(6504): 643-650. https://doi.org/10.1126/science.abc5902
- 76Zhou H, Chen Y, Zhang S, et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun. 2019; 10(1): 3068. https://doi.org/10.1038/s41467-019-10897-4
- 77Suryadevara N, Shrihari S, Gilchuk P, et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell. 2021; 184(9): 2316-2331. e15. https://doi.org/10.1016/j.cell.2021.03.029
- 78Cheng MH, Porritt RA, Rivas MN, et al. A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry in vitro. Structure. 2021; 29(9): 951-962. e3. https://doi.org/10.1016/j.str.2021.04.005
- 79Pinto D, Sauer MM, Czudnochowski N, et al. Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science. 2021; 373(6559): 1109-1116. https://doi.org/10.1126/science.abj3321
- 80Zhou P, Yuan M, Song G, et al. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. A Protective Broadly Cross-Reactive Human Antibody Defines a Conserved Site of Vulnerability on Beta-Coronavirus Spikes. bioRxiv; 2021. Mar 31. https://doi.org/10.1101/2021.03.30.437769
- 81Li W, Chen Y, Prévost J, et al. Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep. 2022; 38(2):110210. https://doi.org/10.1016/j.celrep.2021.110210
- 82Islam MR, Hoque MN, Rahman MS, et al. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci Rep. 2020; 10(1):14004. https://doi.org/10.1038/s41598-020-70812-6
- 83Kaur N, Singh R, Dar Z, Bijarnia RK, Dhingra N, Kaur T. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. Infect Genet Evol. 2021; 89:104490. https://doi.org/10.1016/j.meegid.2020.104490
- 84Ghotloo S, Golsaz-Shirazi F, Amiri MM, Jeddi-Tehrani M, Shokri F. Epitope mapping of tetanus toxin by monoclonal antibodies: implication for immunotherapy and vaccine design. Neurotox Res. 2020; 37(2): 239-249. https://doi.org/10.1007/s12640-019-00096-w
- 85Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and Rapid Spread of a New Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Lineage with Multiple Spike Mutations in South Africa. MedRxiv; 2020.
10.1101/2020.12.21.20248640 Google Scholar
- 86Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science. 2021(6538): 372. eabg3055.
- 87Davies NG, Jarvis CI, Edmunds WJ, et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B. 1.1. 7. Nature. 2021; 593(7858): 270-274.
- 88Team EE. Updated rapid risk assessment from ECDC on the risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA–first update. Euro Surveill. 2021; 26(3):2101211.
- 89Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020; 182(5): 1295-1310. e20.
- 90Barton MI, MacGowan S, Kutuzov M, Dushek O, Barton GJ, van der Merwe PA. Effects of Common Mutations in the SARS-CoV-2 Spike RBD Domain and its Ligand the Human ACE2 Receptor on Binding Affinity and Kinetics; 2021.
10.1101/2021.05.18.444646 Google Scholar
- 91Adam D. The rush to study fast spreading coronavirus variants. Nature. 2021; 594: 19-20.
- 92Mahase E. Delta Variant: What Is Happening with Transmission, Hospital Admissions, and Restrictions? British Medical Journal Publishing Group; 2021.
- 93Campbell F, Archer B, Laurenson-Schafer H, et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill. 2021; 26(24):2100509.
- 94Motozono C, Toyoda M, Zahradnik J, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021; 29(7): 1124-1136. e11. https://doi.org/10.1016/j.chom.2021.06.006
- 95 Tracking SARS-CoV-2 Variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
- 96Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021; 593(7857): 130-135. https://doi.org/10.1038/s41586-021-03398-2
- 97Wang P, Casner RG, Nair MS, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe. 2021; 29(5): 747-751. e4. https://doi.org/10.1016/j.chom.2021.04.007
- 98Widera M, Wilhelm A, Hoehl S, et al. Bamlanivimab Does Not Neutralize Two SARS-CoV-2 Variants Carrying E484K in Vitro. medRxiv; 2021: 2021. https://doi.org/10.1101/2021.02.24.21252372
- 99Starr TN, Greaney AJ, Dingens AS, Bloom JD. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep Med. 2021; 2(4):100255. https://doi.org/10.1016/j.xcrm.2021.100255
- 100Tada T, Dcosta BM, Zhou H, Vaill A, Kazmierski W, Landau NR. Decreased Neutralization of SARS-CoV-2 Global Variants by Therapeutic Anti-spike Protein Monoclonal Antibodies. bioRxiv; 2021.
10.1101/2021.02.18.431897 Google Scholar
- 101Hu J, Peng P, Wang K, et al. Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies. Cell Mol Immunol. 2021; 18(4): 1061-1063. https://doi.org/10.1038/s41423-021-00648-1
- 102McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science. 2021; 371(6534): 1139-1142. https://doi.org/10.1126/science.abf6950
- 103Graham C, Seow J, Huettner I, et al. Impact of the B.1.1.7 Variant on Neutralizing Monoclonal Antibodies Recognizing Diverse Epitopes on SARS-CoV-2 Spike. bioRxiv; 2021. https://doi.org/10.1101/2021.02.03.429355
10.1101/2021.02.03.429355 Google Scholar
- 104Wang R, Zhang Q, Ge J, et al. Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity. 2021; 54(7): 1611-1621. e5. https://doi.org/10.1016/j.immuni.2021.06.003
- 105Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021; 596(7871): 276-280. https://doi.org/10.1038/s41586-021-03777-9
- 106Chen RE, Winkler ES, Case JB, et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature. 2021; 596(7870): 103-108. https://doi.org/10.1038/s41586-021-03720-y
- 107Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 602, 671, 675. 2021/12/23 2021.https://doi.org/10.1038/s41586-021-04389-z
- 108Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2021; 602: 657-663. https://doi.org/10.1038/s41586-021-04385-3
- 109Gruell H, Vanshylla K, Tober-Lau P, et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med. 2022. https://doi.org/10.1038/s41591-021-01676-0
- 110Baum A, Ajithdoss D, Copin R, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science. 2020; 370(6520): 1110-1115. https://doi.org/10.1126/science.abe2402
- 111Chen X, Li R, Pan Z, et al. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell Mol Immunol. 2020; 17(6): 647-649. https://doi.org/10.1038/s41423-020-0426-7
- 112Seydoux E, Homad LJ, MacCamy AJ, et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunity. 2020; 53(1): 98-105. e5. https://doi.org/10.1016/j.immuni.2020.06.001
- 113 Structure of the SARS-CoV-2 spike glycoprotein (closed state). https://www.rcsb.org/structure/6VXX
- 114 SARS-CoV-2 spike ectodomain structure (open state). https://www.rcsb.org/structure/6VYB