Development of antibody resistance in emerging mutant strains of SARS CoV-2: Impediment for COVID-19 vaccines
Narasimha M. Beeraka
Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
Search for more papers by this authorOlga A. Sukocheva
Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, Australia
Search for more papers by this authorElena Lukina
Discipline of Biology, College of Sciences, Flinders University of South Australia, Bedford Park, Australia
Search for more papers by this authorCorresponding Author
Junqi Liu
Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
Correspondence
Ruitai Fan and Junqi Liu, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str, Zhengzhou, 450052, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Ruitai Fan
Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
Correspondence
Ruitai Fan and Junqi Liu, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str, Zhengzhou, 450052, China.
Email: [email protected] and [email protected]
Search for more papers by this authorNarasimha M. Beeraka
Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
Search for more papers by this authorOlga A. Sukocheva
Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, Australia
Search for more papers by this authorElena Lukina
Discipline of Biology, College of Sciences, Flinders University of South Australia, Bedford Park, Australia
Search for more papers by this authorCorresponding Author
Junqi Liu
Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
Correspondence
Ruitai Fan and Junqi Liu, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str, Zhengzhou, 450052, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Ruitai Fan
Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
Correspondence
Ruitai Fan and Junqi Liu, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str, Zhengzhou, 450052, China.
Email: [email protected] and [email protected]
Search for more papers by this authorNarasimha M. Beeraka and Olga A. Sukocheva contributed equally.
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a highly infectious agent associated with unprecedented morbidity and mortality. A failure to stop growth of COVID-19-linked morbidity rates is caused by SARS-CoV-2 mutations and the emergence of new highly virulent SARS-CoV-2 strains. Several acquired SARS-CoV-2 mutations reflect viral adaptations to host immune defence. Mutations in the virus Spike-protein were associated with the lowered effectiveness of current preventive therapies, including vaccines. Recent in vitro studies detected diminished neutralisation capacity of vaccine-induced antibodies, which are targeted to bind Spike receptor-binding and N-terminal domains in the emerging strains. Lower than expected inhibitory activity of antibodies was reported against viruses with E484K Spike mutation, including B.1.1.7 (UK), P.1 (Brazil), B.1.351 (South African), and new Omicron variant (B.1.1.529) with E484A mutation. The vaccine effectiveness is yet to be examined against new mutant strains of SARS-CoV-2 originating in Europe, Nigeria, Brazil, South Africa, and India. To prevent the loss of anti-viral protection in vivo, often defined as antibody resistance, it is required to target highly conserved viral sequences (including Spike protein) and enhance the potency of antibody cocktails. In this review, we assess the reported mutation-acquiring potential of coronaviruses and compare efficacies of current COVID-19 vaccines against ‘parent’ and ‘mutant’ strains of SARS-CoV-2 (Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529)).
CONFLICTS OF INTEREST
Authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Not applicable.
REFERENCES
- 1Luk HK, Li X, Fung J, Lau SK, Woo PC. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 2019; 71: 21-30.
- 2King AM, Lefkowitz EJ, Mushegian AR, et al. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Arch Virol. 2018; 163: 2601-2631.
- 3Kusanagi K-i, Kuwahara H, Katoh T, et al. Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate. J Veter Med Sci. 1992; 54: 313-318.
- 4Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310: 676-679.
- 5Poon LL, Chu DK, Chan K-H, et al. Identification of a novel coronavirus in bats. J Virol. 2005; 79: 2001-2009.
- 6Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir Res. 2014; 101: 45-56.
- 7Pedersen NC. An update on feline infectious peritonitis: virology and immunopathogenesis. Veter J. 2014; 201: 123-132.
- 8Kúdelová M, Belvončíková P, Vrbová M, et al. Detection of murine herpesvirus 68 (MHV-68) in dermacentor reticulatus ticks. Microb Ecol. 2015; 70: 785-794.
- 9Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17: 181-192.
- 10Woo PC, Lau SK, Lam CS, et al. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J Virol. 2009; 83: 908-917.
- 11Woo PC, Lau SK, Lam CS, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012; 86: 3995-4008.
- 12Woo PC, Lau SK, Lam CS, et al. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in gammacoronavirus. J Virol. 2014; 88: 1318-1331.
- 13Ma Y, Zhang Y, Liang X, et al. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States. mBio. 2015; 6:e00064.
- 14 NIH.Gov. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences in NCBI cirus. Available online: https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=2501931
- 15Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2019; 5: 536-544.
- 16Siddell SG, Walker PJ, Lefkowitz EJ, et al. Additional changes to taxonomy ratified in a special vote by the international committee on taxonomy of viruses (October 2018). Arch Virol. 2019; 164: 943-946.
- 17Araf Y, Akter F, Tang Yd, et al. Omicron variant of SARS-CoV-2: genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol. 2022;94(5):1825-1832.
- 18Zhang Y-Z, Chen Y-M, Wang W, Qin X-C, Holmes EC. Expanding the RNA virosphere by unbiased metagenomics. Annual Review of Virology. 2019; 6: 119-139.
- 19 NIH.Gov. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences in NCBI virus. Accessed May 8, 2021.
- 20Beeraka NM, Tulimilli SV, Karnik M, et al. The current status and challenges in the development of vaccines and drugs against Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2). BioMed Res Int. 2021; 2021:8160860.
- 21Herrera AS, Beeraka NM, Sinelnikov MY, et al. The beneficial effects of QIAPI 1® against pentavalent arsenic-induced lung toxicity a hypothetical model for SARS CoV2-induced lung toxicity. Curr Pharm Biotechnol. 2021.
- 22Beeraka NM, Sadhu SP, Madhunapantula SV, et al. Strategies for targeting SARS CoV-2: small molecule inhibitors—the current status. Front Immunol. 2020; 11:552925.
- 23Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966; 121: 190-193.
- 24Chiu SS, Hung Chan K, Wing Chu K, et al. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin Infect Dis. 2005; 40: 1721-1729.
- 25Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003; 348: 1967-1976.
- 26Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003; 348: 1953-1966.
- 27Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis. 2003; 36: 985-989.
- 28Woo PC, Lau SK, Chu C-m, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005; 79: 884-895.
- 29Zakivan ABS, Bestebroer TM, Osterhaus AD, Fouchier RA, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367: 1814-1820.
- 30Du L, Tai W, Zhou Y, Jiang S. Vaccines for the prevention against the threat of MERS-CoV. Expet Rev Vaccine. 2016; 15: 1123-1134.
- 31Zhang N, Wang L, Deng X, et al. Recent advances in the detection of respiratory virus infection in humans. J Med Virol. 2020; 92: 408-417.
- 32Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382: 727-733.
- 33Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020; 92: 418-423.
- 34Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). StatPearls Publishing; 2020.
- 35 NIH.Gov. WHO Coronavirus (COVID-19) Dashboard. 2021.
- 36Beeraka NM, Tulimilli SV, Greeshma MV, et al. COVID-19 Effects on Geriatric Population and Failures of Aminoquinoline Therapy: Compilation of Studies from EU, USA, and China; Safety and Efficacy of Vaccines in the Prevention & Treatment of COVID-19. Curr Med Chem. 2022. https://public.tableau.com/app/profile/covid.19.data.resource.hub/viz/COVID-19Cases_15840488375320/COVID-19GlobalView
- 37Zhang X, Wu S, Wu B, et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal transduction and targeted therapy. 2021; 6: 1-3.
- 38Saxena SK, Kumar S, Ansari S, et al. Characterization of the novel SARS-CoV-2 omicron (B. 1.1. 529) variant of concern and its global perspective. J Med Virol. 2021;94(4):1738-1744
- 39Collie S, Champion J, Moultrie H, Bekker L-G, Gray G. Effectiveness of BNT162b2 vaccine against omicron variant in South Africa. N Engl J Med. 2021.
- 40Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17: 181-192. https://doi.org/10.1038/s41579-018-0118-9
- 41Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020; 92: 418-423. https://doi.org/10.1002/jmv.25681
- 42De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS, MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14: 523-534.
- 43Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006; 66: 193-292. https://doi.org/10.1016/S0065-3527(06)66005-3
- 44Demogines A, Farzan M, Sawyer SL. Evidence for ACE2-utilizing coronaviruses (CoVs) related to severe acute respiratory syndrome CoV in bats. J Virol. 2012; 86: 6350-6353. https://doi.org/10.1128/JVI.00311-12
- 45Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011; 174: 11-22. https://doi.org/10.1016/j.jsb.2010.11.021
- 46DeDiego ML, Alvarez E, Almazan F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007; 81: 1701-1713. https://doi.org/10.1128/JVI.01467-06
- 47Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Method Mol Biol. 2015; 1282: 1-23. https://doi.org/10.1007/978-1-4939-2438-7_1
- 48Cui L, Wang H, Ji Y, et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J Virol. 2015; 89: 9029-9043. https://doi.org/10.1128/JVI.01331-15
- 49van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012; 3. https://doi.org/10.1128/mBio.00473-12
- 50Czub M, Weingartl H, Czub S, He R, Cao J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine. 2005; 23: 2273-2279. https://doi.org/10.1016/j.vaccine.2005.01.033
- 51Karnik M, Beeraka NM, Uthaiah CA, et al. A review on SARS-CoV-2-induced neuroinflammation, neurodevelopmental complications, and recent updates on the vaccine development. Mol Neurobiol. 2021: 1-29.
- 52Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006; 66: 193-292.
- 53Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol. 2000; 81: 853-879.
- 54de Groot R, Baker S, Baric R, Ziebuhr J. In: AMQ King, MJ Adams, EB Carstens, EJ Lefkowitz, eds. Coronaviridae. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. 2011;87(14):7790–7792.
- 55Desforges M, Desjardins J, Zhang C, Talbot PJ. The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus. J Virol. 2013; 87: 3097-3107.
- 56Huang X, Dong W, Milewska A, et al. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J Virol. 2015; 89: 7202-7213.
- 57Khailany R, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020; 19: 100682-102020.
- 58Marra MA, Jones S, Astell C, et al. The genome sequence of the SARS-associated coronavirus. Science. 2003; 300: 1399-1404.
- 59Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003; 331: 991-1004.
- 60van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012; 3.
- 61Alanagreh La, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020; 9:331.
- 62Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583: 459-468.
- 63Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell. 2020; 181: 914-921.e910.
- 64Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271-280.e278.
- 65Fenizia C, Galbiati S, Vanetti C, et al. SARS-CoV-2 entry: at the crossroads of CD147 and ACE2. Cells. 2021; 10: 1434.
- 66Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181: 281-292.e286. https://doi.org/10.1016/j.cell.2020.02.058
- 67Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall. 2017; 1: 33-46. https://doi.org/10.1002/gch2.1018
- 68Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020; 370: 861-865.
- 69Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal transduction and targeted therapy. 2020; 5: 1-10.
- 70Xiong L, Edwards CK, Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci. 2014; 15: 17411-17441.
- 71Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antivir Res. 2014; 109: 97-109.
- 72Su C-M, Wang L, Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep. 2021; 11: 1-12.
- 73Kanzawa N, Nishigaki K, Hayashi T, et al. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-κB activation. FEBS Lett. 2006; 580: 6807-6812.
- 74Kopecky-Bromberg SA, Martinez-Sobrido L, Palese P. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J Virol. 2006; 80: 785-793.
- 75Fang X, Gao J, Zheng H, et al. The membrane protein of SARS-CoV suppresses NF-κB activation. J Med virology. 2007; 79: 1431-1439.
- 76Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Front Immunol. 2021; 12.
- 77Rashid F, Dzakah EE, Wang H, Tang S. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta. Virus Res. 2021; 296:198350.
- 78Dejnirattisai W, Zhou D, Supasa P, et al. Antibody evasion by the P. 1 strain of SARS-CoV-2. Cell. 2021; 184: 2939-2954.e2939.
- 79Kannan S, Ali PSS, Sheeza A. Evolving biothreat of variant SARS-CoV-2–molecular properties, virulence and epidemiology. Eur Rev Med Pharmacol Sci. 2021; 25: 4405-4412.
- 80 GISAID. Global initiative on sharing avian influenza data (GISAID). Available online: https://www.gisaid.org/
- 81Das JK, Sengupta A, Choudhury PP, Roy S. Characterizing genomic variants and mutations in SARS-CoV-2 proteins from Indian isolates. Gene Rep. 2021; 25:101044.
- 82Beeraka NM, Tulimilli SV, Karnik M, et al. The current status and challenges in the development of vaccines and drugs against severe acute respiratory syndrome- corona virus-2 (SARS-CoV-2). BioMed Res Int; 2021; 2021:8160860. https://doi.org/10.1155/2021/8160860
- 83Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020; 92: 584-588. https://doi.org/10.1002/jmv.25719
- 84Callaway E. The coronavirus is mutating - does it matter? Nature. 2020; 585: 174-177. https://doi.org/10.1038/d41586-020-02544-6
- 85Eyre DW, Taylor D, Purver M, et al. Effect of covid-19 vaccination on transmission of alpha and delta variants. N Engl J Med. 2022;386(8):744-756.
- 86Khateeb J, Li Y, Zhang H. Emerging SARS-CoV-2 variants of concern and potential intervention approaches. Crit Care. 2021; 25: 1-8.
- 87Gussow AB, Auslander N, Faure G, Wolf YI, Zhang F, Koonin EV. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc Natl Acad Sci USA. 2020; 117: 15193-15199. https://doi.org/10.1073/pnas.2008176117
- 88Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182: 812-827. https://doi.org/10.1016/j.cell.2020.06.043
- 89Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ. 2020; 98: 495-504. https://doi.org/10.2471/BLT.20.253591
- 90Justo Arevalo S, Zapata Sifuentes D, Huallpa CJ, et al. Global geographic and temporal analysis of SARS-CoV-2 haplotypes normalized by COVID-19 cases during the pandemic. Front Microbiol. 2021; 12: 232.
- 91Xia H, Cao Z, Xie X, et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 2020; 33:108234.
- 92Lin J-w, Tang C, Wei H-c, et al. Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response. Cell host microbe. 2021; 29: 489-502.e488.
- 93Flower TG, Buffalo CZ, Hooy RM, Allaire M, Ren X, Hurley JH. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc Natl Acad Sci. 2021; 118:e2021785118.
- 94Young BE, Fong S-W, Chan Y-H, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020; 396: 603-611.
- 95Touret F, Luciani L, Baronti C, et al. Replicative fitness of a SARS-CoV-2 20I/501Y. V1 variant from lineage B. 1.1. 7 in human reconstituted bronchial epithelium. mBio. 2021; 12:e00850-00821.
- 96Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020; 182: 1295-1310.e1220.
- 97Plante JA, Liu Y, Liu J, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021; 592: 116-121.
- 98Zhang L, Jackson CB, Mou H, et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun. 2020; 11: 1-9.
- 99Hou YJ, Chiba S, Halfmann P, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 2020; 370: 1464-1468.
- 100McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science. 2021; 371: 1139-1142.
- 101Li Q, Nie J, Wu J, et al. SARS-CoV-2 501Y. V2 variants lack higher infectivity but do have immune escape. Cell. 2021; 184: 2362-2371.e2369.
- 102Yang H-C, Chen C-h, Wang J-H, et al. Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. Proc Natl Acad Sci. 2020; 117: 30679-30686.
- 103Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. Front Microbiol. 2020; 11:1800.
- 104Guan Q, Sadykov M, Mfarrej S, et al. A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic. Int J Infect Dis. 2020; 100: 216-223.
- 105Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020; 181: 894-904.e899.
- 106Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun. 2019; 10: 1-9.
- 107Yu I-M, Oldham ML, Zhang J, Chen J. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona-and arteriviridae. J Biol Chem. 2006; 281: 17134-17139.
- 108Zhao P, Cao J, Zhao L-J, et al. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology. 2005; 331: 128-135.
- 109Sarkar R, Mitra S, Chandra P, et al. Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations. Archives Virology. 2021; 166: 801-812.
- 110Alai S, Gujar N, Joshi M, Gautam M, Gairola S. Pan-India novel coronavirus SARS-CoV-2 genomics and global diversity analysis in spike protein. Heliyon. 2021; 7:e06564.
- 111Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci. 2020; 117: 9241-9243.
- 112Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020; 18: 1-9.
- 113Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020; 7: 1012-1023.
- 114Brufsky A. Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J Med Virol. 2020;92(9):1386-1390.
- 115 GISAID. Nextstrain. 2021.
- 116Liu S, Shen J, Fang S, et al. Genetic spectrum and distinct evolution patterns of SARS-CoV-2. Front Microbiol. 2020; 11: 2390.
- 117Laha S, Chakraborty J, Das S, Manna SK, Biswas S, Chatterjee R. Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infect Genet Evol. 2020; 85:104445.
- 118Triggle CR, Bansal D, Ding H, et al. A comprehensive review of viral characteristics, transmission, pathophysiology, immune response, and management of SARS-CoV-2 and COVID-19 as a basis for controlling the pandemic. Front Immunol. 2021; 12:338.
- 119Wise J. Covid-19: new coronavirus variant is identified in UK. BMJ. 2020; 371:m4857. https://doi.org/10.1136/bmj.m4857
- 120Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015; 282:20143085. https://doi.org/10.1098/rspb.2014.3085
- 121Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005; 309: 1864-1868.
- 122Cerutti G, Rapp M, Guo Y, et al. Structural basis for accommodation of emerging B. 1.351 and B. 1.1. 7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure. 2021; 29(7): 655–663.
- 123Hossain MK, Hassanzadeganroudsari M, Apostolopoulos V. The emergence of new strains of SARS-CoV-2. What does it mean for COVID-19 vaccines? Expet Rev Vaccine. 2021: 1-4.
- 124Vasireddy D, Vanaparthy R, Mohan G, Malayala SV, Atluri P. Review of COVID-19 variants and COVID-19 vaccine efficacy: what the clinician should know? J Clin Med Res. 2021; 13: 317-325.
- 125Motozono C, Toyoda M, Zahradnik J, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021; 29: 1124-1136.e1111.
- 126 WHO. Tracking SARS-CoV-2 variants. 2021.
- 127 (GISAID). G.G.I.o.S.A.I.D.
- 128Baj A, Novazzi F, Ferrante FD, et al. Introduction of SARS-COV-2 C. 37 (WHO VOI lambda) from Peru to Italy. J Med Virol. 2021;93(12):6460-6461.
- 129Agwa SH, Kamel MM, Elghazaly H, et al. Association between interferon-lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 variant polymorphisms with the course and outcome of SARS-CoV-2 patients. Genes. 2021; 12: 830.
- 130Chi X, Yan R, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020; 369: 650-655.
- 131Hoffmann M, Krüger N, Schulz S, et al. The omicron variant is highly resistant against antibody-mediated neutralization–implications for control of the COVID-19 pandemic. Cell. 2021;185(3):447-456.
- 132Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol. 2021;94(4):1641-1649.
- 133Kandeel M, Mohamed MEM, Abd El-Lateef HM, Venugopala KN, El-Beltagi HS. Omicron variant genome evolution and phylogenetics. J Med Virol. 2021;94(4):1627-1632.
- 134Wang L, Cheng G. Sequence analysis of the emerging sars-CoV-2 variant omicron in South Africa. J Med Virol. 2021; 94(4): 1728-1733.
- 135Hossain G, Tang Yd, Akter S, Zheng C. Roles of the polybasic furin cleavage site of spike protein in SARS-CoV-2 replication, pathogenesis, and host immune responses and vaccination. J Med Virol. 2021; 94(5):1815-1820.
- 136He X, Hong W, Pan X, Lu G, Wei X. SARS-CoV-2 omicron variant: characteristics and prevention. MedComm. 2021;2(4):838-845.
10.1002/mco2.110 Google Scholar
- 137Muik A, Lui BG, Wallisch A-K, et al. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine–elicited human sera. Science. 2022;375(6581): 678-680.
- 138Accorsi EK, Britton A, Fleming-Dutra KE, et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 omicron and delta variants. JAMA. 2022;327(7):639-651.
- 139Grunau B, Goldfarb DM, Asamoah-Boaheng M, et al. Immunogenicity of extended mRNA SARS-CoV-2 vaccine dosing intervals. JAMA. 2021;327(3):279-281.
- 140Gaebler C, Wang Z, Lorenzi JC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021; 591: 639-644.
- 141Wang Z, Muecksch F, Schaefer-Babajew D, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021: 1-10.
- 142Schmidt F, Muecksch F, Weisblum Y, et al. Plasma neutralization of the SARS-CoV-2 omicron variant. N Engl J Med. 2021;386(6):599-601.
- 143Nemet I, Kliker L, Lustig Y, et al. Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron infection. N Engl J Med. 2021;386(5):492-494.
- 144Falsey AR, Frenck RW, Jr, Walsh EE, et al. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N Engl J Med. 2021; 385: 1627-1629.
- 145McCallum M, De Marco A, Lempp FA, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021; 184: 2332-2347.e2316.
- 146Li D, Edwards RJ, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184(16):4203-4219.
- 147Liu Y, Soh WT, Kishikawa J-i, et al. An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell. 2021;184(13):3452-3466.
- 148Rahman MS, Islam MR, Alam ARU, et al. Evolutionary dynamics of SARS-CoV-2 nucleocapsid protein and its consequences. J Med virology. 2021; 93: 2177-2195.
- 149Greaney AJ, Starr TN, Barnes CO, et al. Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat Commun. 2021; 12: 1-14.
- 150Zhou H, Chen Y, Zhang S, et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun. 2019; 10: 1-13.
- 151Widera M, Mühlemann B, Corman VM, et al. Surveillance of SARS-CoV-2 in Frankfurt am main from October to december 2020 reveals high viral diversity including spike mutation N501Y in B. 1.1. 70 and B. 1.1. 7. Microorganisms. 2021; 9:748.
- 152Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005; 24: 1634-1643.
- 153Qu X-X, Hao P, Song X-J, et al. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J Biol Chem. 2005; 280: 29588-29595.
- 154Li F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J Virol. 2008; 82: 6984-6991.
- 155Wu K, Peng G, Wilken M, Geraghty RJ, Li F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J Biol Chem. 2012; 287: 8904-8911.
- 156AlBalwi MA, Khan A, AlDrees M, et al. Evolving sequence mutations in the Middle East respiratory syndrome coronavirus (MERS-CoV). J Infect Public Health. 2020; 13: 1544-1550.
- 157Ba Abduallah MM, Hemida MG. Comparative analysis of the genome structure and organization of the Middle East respiratory syndrome coronavirus (MERS-CoV) 2012 to 2019 revealing evidence for virus strain barcoding, zoonotic transmission, and selection pressure. Rev Med Virol. 2021; 31: 1-12.
- 158Alnazawi M, Altaher A, Kandeel M. Comparative genomic analysis MERS CoV isolated from humans and camels with special reference to virus encoded helicase. Biol Pharm Bull. 2017; 40: 1289-1298.
- 159McBride R, Fielding BC. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses. 2012; 4: 2902-2923.
- 160Rehman HA, Ramzan F, Basharat Z, Shakeel M, Khan MUG, Khan IA. Comprehensive omparative genomic and microsatellite analysis of SARS, MERS, BAT-SARS, and COVID-19 coronaviruses. J Med Virol. 2021; 93(7): 4382-4391.
- 161Andreano E, Nicastri E, Paciello I, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell. 2021; 184: 1821-1835.e1816.
- 162Andreano E, Rappuoli R. SARS-CoV-2 escaped natural immunity, raising questions about vaccines and therapies. Nat Med. 2021; 27: 759-761.
- 163Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B. 1.1. 7 and B. 1.351 variants to neutralizing antibodies. Nat Med. 2021; 27: 917-924.
- 164Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021; 131(14): 717-726.e150175.
- 165Sattler A, Schrezenmeier E, Weber UA, et al. Impaired humoral and cellular immunity after SARS-CoV2 BNT162b2 (Tozinameran) prime-boost vaccination in kidney transplant recipients. J Clin Invest. 2021; 131(14):e150175.
- 166Turner JS, O’Halloran JA, Kalaidina E, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021; 596: 109-113.
- 167Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity. 2016; 44: 116-130.
- 168Dogan I, Bertocci B, Vilmont V, et al. Multiple layers of B cell memory with different effector functions. Nat Immunol. 2009; 10: 1292-1299.
- 169Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK. Different B cell populations mediate early and late memory during an endogenous immune response. Science. 2011; 331: 1203-1207.
- 170Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021; 397: 1819-1829.
- 171Marco JJG, Pasquín MJÁ, Martín SM. Efectividad y seguridad de las vacunas para el SARS-CoV-2 actualmente disponibles. FMC-Formación Médica Continuada en Atención Primaria. 2021; 28(8): 442-451.
- 172Pegu A, O’Connell S, Schmidt SD, et al. Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science. 2021;373(6561):1372-1377.
- 173Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021; 384: 403-416.
- 174Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020;383(20):1920-1931.
- 175Formica N, Mallory R, Albert G, et al. Different dose regimens of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373) in younger and older adults: a phase 2 randomized placebo-controlled trial. PLoS Med. 2021; 18:e1003769.
- 176Gorman MJ, Patel N, Guebre-Xabier M, et al. Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination. Cell Rep Med. 2021; 2:100405.
- 177Sahin U, Muik A, Vogler I, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021; 595(7868): 572-577.
- 178Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. 2020; 383: 1544-1555.
- 179Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020; 584: 437-442.
- 180Weisblum Y, Schmidt F, Zhang F. Fuggite da anticorpi neutralizanti da varianti di proteine spike SARS-CoV-2. Elife. 2020; 9:e61312.
- 181Barnes CCAJee, Abernathy ME, Ma Dam K, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 2020; 588: 682-687.
- 182Starr TN, Greaney AJ, Addetia A, et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021; 371: 850-854.
- 183Pollet J, Chen W-H, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev. 2021.
- 184Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397: 671-681.
- 185Zhu F-C, Guan X-H, Li Y-H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020; 396: 479-488.
- 186Kiem CT, Andronico A, Bosetti P, et al. Benefits and risks associated with different uses of the COVID-19 vaccine Vaxzevria: a modelling study, France, May to September 2021. Euro Surveill. 2021; 26:2100533.
- 187Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and intracranial venous sinus thrombosis after “COVID-19 vaccine AstraZeneca” exposure. J Clin Med. 2021; 10: 1599.
- 188Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021; 397: 99-111.
- 189Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2020; 396: 1979-1993.
- 190Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26. COV2. S vaccine against Covid-19. N Engl J Med. 2021.
- 191Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1–2a trial of Ad26. COV2. S covid-19 vaccine. N Engl J Med. 2021.
- 192Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 covid-19 vaccine against the B. 1.351 variant. N Engl J Med. 2021; 384: 1899-1909.
- 193Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med. 2021; 385: 1172-1183.
- 194Ella R, Vadrevu KM, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis. 2021.
- 195Hitchings MDT, Ranzani OT, Torres MSS, et al Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: a test-negative case-control study. Lancet Reg Health Am. 2021. https://doi.org/10.1016/j.lana.2021.100025
- 196Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res. 2020; 288:198114.
- 197Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;1(2):181-192.
- 198Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021; 21: 39-51.
- 199Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. J Virol. 2020; 94:e01246-01220.
- 200Xie X, Liu Y, Liu J, et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. 2021; 27: 620-621 https://doi.org/10.1038/s41591-021-01270-4
- 201Triggle CR, Bansal D, Ding H, et al. A comprehensive review of viral characteristics, transmission, pathophysiology, immune response, and management of SARS-CoV-2 and COVID-19 as a basis for controlling the pandemic. Front Immunol. 2021; 12:631139. https://doi.org/10.3389/fimmu.2021.631139
- 202Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182: 812-827.e819.
- 203Baric RS. Emergence of a highly fit SARS-CoV-2 variant. N Engl J Med. 2020;383(27):2684-2686.
- 204Li D-D, Li Q-H. SARS-CoV-2: vaccines in the pandemic era. Military Med Res. 2021; 8: 1-15.
- 205Wibmer CK, Ayres F, Hermanus T, et al. SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med. 2021; 27: 622-625.
- 206Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021; 592: 616-622.
- 207Collier DA, De Marco A, Ferreira IA. et al. Sensitivity of SARS-CoV-2 B. 1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021; 593(7857): 136-141.
- 208Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature. 2021; 593: 130-135.
- 209Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B. 1.351 from natural and vaccine-induced sera. Cell. 2021; 184: 2348-2361.e2346.
- 210Abdool Karim SS, de Oliveira T. New SARS-CoV-2 variants—clinical, public health, and vaccine implications. N Engl J Med. 2021; 384: 1866-1868.
- 211Emary KRW, Tanya G, Parvinder KA, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B. 1.1. 7): an exploratory analysis of a randomised controlled trial. The Lancet. 2021; 397(10282): 1351-1362.
- 212Mahase E. British Medical Journal Publishing Group; 2021.
- 213Liu Y, Liu J, Xia H, et al. Neutralizing activity of BNT162b2-elicited serum. N Engl J Med. 2021; 384: 1466-1468.
- 214Shen X, Tang H, Pajon R, et al. Neutralization of SARS-CoV-2 variants B. 1.429 and B. 1.351. N Engl J Med. 2021; 384(24): 2352-2354.
- 215Hoffmann M, Arora P, Groß R, et al. SARS-CoV-2 variants B. 1.351 and P. 1 escape from neutralizing antibodies. Cell. 2021; 184: 2384-2393.
- 216Coutinho RM, Marquitti FM, Ferreira LS, et al. Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P. 1 variant. Commun Med. 2021; 1(1): 1-8.
- 217Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P. 1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021; 372(6544): 815-821.
- 218Yadav PD, Sapkal GN, Abraham P, et al. Neutralization of variant under investigation B. 1.617. 1 with sera of BBV152 vaccinees. Clin Infect Dis. 2022; 74(2): 366-368.
- 219Deng X, Garcia-Knight MA, Khalid MM, et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell. 2021; 184(13): 3426-3437.
- 220Wadman M. California coronavirus strain may be more infectious—and lethal. Science. 2021.
- 221Cohen J. South Africa suspends use of AstraZeneca’s COVID-19 vaccine after it fails to clearly stop virus variant. Science. 2021; 10.
- 222Garcia-Beltran WF, Lam EC, Denis KS, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021; 184: 2372-2383.e2379.
- 223Wang R, Zhang Q, Ge J, et al. Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity. 2021; 54: 1611-1621.e1615.
- 224Novelli G, Biancolella M, Mehrian-Shai R, et al. COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. Hum Genomics. 2021; 15: 1-13.
- 225Bignami E, Manca D, Bellini V. Riding the waves of COVID-19 pandemics–a call for a multiobjective compromise. Trend Anaesth Crit Care. 2021;38:13-15.
- 226Schmidt F, Weisblum Y, Rutkowska M, et al. High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature. 2021; 592: 616-622.
- 227Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B. 1.351 variant. N Engl J Med. 2021.
- 228Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 covid-19 vaccine against the B. 1.351 variant. N Engl J Med. 2021.
- 229Neuzil KM. Interplay between Emerging SARS-CoV-2 Variants and Pandemic Control. 2021.
10.1056/NEJMe2103931 Google Scholar
- 230Sadoff J, Davis K, Douoguih M. Thrombotic thrombocytopenia after Ad26. COV2. S vaccination—response from the manufacturer. N Engl J Med. 2021.
- 231Novavax. 11 March 2021. https://ir.novavax.com/node/15661/pdf
- 232Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B. 1.351 variant. N Engl J Med. 2021; 384: 1885-1898.
- 233Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines. 2021; 6(1): 1-7.
- 234Krammer F, Srivastava K, Alshammary H, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med. 2021; 384: 1372-1374.
- 235Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins In Evolving Genes and Proteins. Elsevier; 1965: 97-166.
10.1016/B978-1-4832-2734-4.50017-6 Google Scholar
- 236Liu Z, VanBlargan LA, Bloyet L-M, et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell host microbe. 2021; 29: 477-488.e474.