Homoplantaginin attenuates high glucose-induced vascular endothelial cell apoptosis through promoting autophagy via the AMPK/TFEB pathway
Lili Fan
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorXueying Zhang
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorYihai Huang
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorBaobao Zhang
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorWenjing Li
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorQingru Shi
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorCorresponding Author
Yining Lin
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Correspondence
Feihua Wu and Yining Lin, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Feihua Wu
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Correspondence
Feihua Wu and Yining Lin, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
Email: [email protected] and [email protected]
Search for more papers by this authorLili Fan
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorXueying Zhang
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorYihai Huang
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorBaobao Zhang
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorWenjing Li
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorQingru Shi
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Search for more papers by this authorCorresponding Author
Yining Lin
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Correspondence
Feihua Wu and Yining Lin, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Feihua Wu
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
Correspondence
Feihua Wu and Yining Lin, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
Email: [email protected] and [email protected]
Search for more papers by this authorLili Fan and Xueying Zhang contributed equally to this work.
Abstract
Vascular endothelial cell (VEC) injury is a key factor in the development of diabetic vascular complications. Homoplantaginin (Hom), one of the main flavonoids from Salvia plebeia R. Br. has been reported to protect VEC. However, its effects and mechanisms against diabetic vascular endothelium remain unclear. Here, the effect of Hom on VEC was assessed using high glucose (HG)-treated human umbilical vein endothelial cells and db/db mice. In vitro, Hom significantly inhibited apoptosis and promoted autophagosome formation and lysosomal function such as lysosomal membrane permeability and the expression of LAMP1 and cathepsin B. The antiapoptosis effect of Hom was reversed by autophagy inhibitor chloroquine phosphate or bafilomycin A1. Furthermore, Hom promoted gene expression and nuclear translocation of transcription factor EB (TFEB). TFEB gene knockdown attenuated the effect of Hom on upregulating lysosomal function and autophagy. Moreover, Hom activated adenosine monophosphate-dependent protein kinase (AMPK) and inhibited the phosphorylation of mTOR, p70S6K, and TFEB. These effects were attenuated by AMPK inhibitor Compound C. Molecular docking showed a good interaction between Hom and AMPK protein. Animal studies indicated that Hom effectively upregulated the protein expression of p-AMPK and TFEB, enhanced autophagy, reduced apoptosis, and alleviated vascular injury. These findings revealed that Hom ameliorated HG-mediated VEC apoptosis by enhancing autophagy via the AMPK/mTORC1/TFEB pathway.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
REFERENCES
- American Diabetes Association Professional Practice Committee, Draznin, B., Aroda, V. R., Bakris, G., Benson, G., Brown, F. M., Freeman, R. S., Green, J., Huang, E., Isaacs, D., Kahan, S., Leon, J., Lyons, S. K., Peters, A. L., Prahalad, P., Reusch, J. E. B., Young-Hyman, D., Das, S., & Kosiborod, M. (2022). 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care, 45(Suppl 1), S17–S38. https://doi.org/10.2337/dc22–S002
- Bravo-San Pedro, J. M., Kroemer, G., & Galluzzi, L. (2017). Autophagy and mitophagy in cardiovascular disease. Circulation Research, 120(11), 1812–1824. https://doi.org/10.1161/CIRCRESAHA.117.311082
- Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611–622. https://doi.org/10.1373/clinchem.2008.112797
- Chen, J. H., Zhang, L. M., Zhou, H., Wang, W., Luo, Y. Z., Yang, H., & Yi, H. H. (2018). Inhibition of autophagy promotes cisplatin-induced apoptotic cell death through ATG5 and beclin 1 in A549 human lung cancer cells. Molecular Medicine Reports, 17(5), 6859–6865. https://doi.org/10.3892/mmr.2018.8686
- Cheng, X. T., Xie, Y. X., Zhou, B., Huang, N., Farfel-Becker, T., & Sheng, Z. H. (2018). Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. Journal of Cell Biology, 217(9), 3127–3139. https://doi.org/10.1083/jcb.201711083
- D'Arcy, M. S. (2019). Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582–592. https://doi.org/10.1002/cbin.11137
- Dauphinee, A. N., Denbigh, G. L., Rollini, A., Fraser, M., Lacroix, C. R., & Gunawardena, A. H. L. A. N. (2019). The function of autophagy in lace plant programmed cell death. Frontiers in Plant Science, 10, 1198. https://doi.org/10.3389/fpls.2019.01198
- de Melo, A. C., Paulino, E., & Garces, Á. H. (2017). A review of mTOR pathway inhibitors in gynecologic cancer. Oxidative Medicine and Cellular Longevity, 2017, 4809751. https://doi.org/10.1155/2017/4809751
- Deretic, V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity, 54(3), 437–453. https://doi.org/10.1016/j.immuni.2021.01.018
- Dikic, I., & Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology, 19(6), 349–364. https://doi.org/10.1038/s41580-018-0003-4
- Fan, W., Han, D., Sun, Z., Ma, S., Gao, L., Chen, J., Li, X., Li, X., Fan, M., Li, C., Hu, D., Wang, Y., & Cao, F. (2017). Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation. Free Radical Biology & Medicine, 108, 725–740. https://doi.org/10.1016/j.freeradbiomed.2017.05.001
- Goodarzi, M. O., & Rotter, J. I. (2020). Genetics insights in the relationship between type 2 diabetes and coronary heart disease. Circulation Research, 126(11), 1526–1548. https://doi.org/10.1161/CIRCRESAHA.119.316065
- He, B. Q., Zhang, B. B., Wu, F. H., Wang, L. Y., Shi, X. J., Qin, W. W., Lin, Y., Ma, S., & Liang, J. Y. (2016). Homoplantaginin inhibits palmitic acid-induced endothelial cells inflammation by suppressing TLR4 and NLRP3 inflammasome. Journal of Cardiovascular Pharmacology, 67(1), 93–101. https://doi.org/10.1097/FJC.0000000000000318
- Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577–590. https://doi.org/10.1016/s0092-8674(03)00929-2
- Ismail, M. B., Rajendran, P., AbuZahra, H. M., & Veeraraghavan, V. P. (2021). Mangiferin inhibits apoptosis in doxorubicin-induced vascular endothelial cells via the Nrf2 signaling pathway. International Journal of Molecular Sciences, 22(8), 4259. https://doi.org/10.3390/ijms22084259
- Jing, K., Song, K. S., Shin, S., Kim, N., Jeong, S., Oh, H. R., Park, J.-H., Seo, K.-S., Heo, J.-Y., Han, J., Park, J.-I., Han, C., Wu, T., Kweon, G.-R., Park, S.-K., Yoon, W.-H., Hwang, B.-D., & Lim, K. (2011). Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy, 7(11), 1348–1358. https://doi.org/10.4161/auto.7.11.16658
- Kale, J., Osterlund, E. J., & Andrews, D. W. (2018). BCL-2 family proteins: Changing partners in the dance towards death. Cell Death and Differentiation, 25(1), 65–80. https://doi.org/10.1038/cdd.2017.186
- Kim, J., Lim, Y. M., & Lee, M. S. (2018). The role of autophagy in systemic metabolism and human-type diabetes. Molecules and Cells, 41(1), 11–17. https://doi.org/10.14348/molcells.2018.2228
- Knapp, M., Tu, X., & Wu, R. (2019). Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacologica Sinica, 40(1), 1–8. https://doi.org/10.1038/s41401-018-0042-6
- Koye, D. N., Ling, J., Dibato, J., Khunti, K., Montvida, O., & Paul, S. K. (2020). Temporal trend in young-onset type 2 diabetes-macrovascular and mortality risk: Study of U.K. primary care electronic medical records. Diabetes Care, 43(9), 2208–2216. https://doi.org/10.2337/dc20-0417
- Li, L., Friedrichsen, H. J., Andrews, S., Picaud, S., Volpon, L., Ngeow, K., Berridge, G., Fischer, R., Borden, K. L. B., Filippakopoulos, P., & Goding, C. R. (2018). A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nature Communications, 9(1), 2685. https://doi.org/10.1038/s41467-018-04849-7
- Li, X. J., Yu, W. L., Qian, X., Xia, Y., Zheng, Y. H., Jong-Ho Lee, J. H., Li, W., Lyu, J., Rao, G., Zhang, X., Qian, C.-N., Rozen, S. G., Jiang, T., & Lu, Z. M. (2017). Nucleus-translocated ACSS2 promotes the gene transcription for lysosomal biogenesis and autophagy. Molecular Cell, 66(5), 684–697.e9. https://doi.org/10.1016/j.molcel.2017.04.026
- Liang, X., Zhang, T., Shi, L., Kang, C., Wan, J., Zhou, Y., Zhu, J., & Mi, M. (2015). Ampelopsin protects endothelial cells from hyperglycemia-induced oxidative damage by inducing autophagy via the AMPK signaling pathway. BioFactors, 41(6), 463–475. https://doi.org/10.1002/biof.1248
- Liang, Y. Y., Wan, X. H., Niu, F. J., Xie, S. M., Guo, H., Yang, Y. Y., Guo, L.-Y., & Zhou, C. Z. (2020). Salvia plebeia R. Br.: An overview about its traditional uses, chemical constituents, pharmacology and modern applications. Biomedicine & Pharmacotherapy, 121, 109589. https://doi.org/10.1016/j.biopha.2019.109589
- Liu, F., Fang, S., Liu, X., Li, J., Wang, X., Cui, J., Chen, T., Li, Z., Yang, F., Tian, J., Li, H., Yin, L., & Yu, B. (2020). Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway. Biochemical Pharmacology, 174, 113830. https://doi.org/10.1016/j.bcp.2020.113830
- Liu, X. J., Yin, M. X., Dong, J. W., Mao, G. X., Min, W. J., Kuang, Z. A., Yang, P., Liu, L., Zhang, N., & Deng, H. B. (2021). Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mtor. Acta Pharmaceutica Sinica B, 11(10), 3134–3149. https://doi.org/10.1016/j.apsb.2021.03.039
- Lu, H., Fan, Y., Qiao, C., Liang, W., Hu, W., Zhu, T., Zhang, J., & Chen, Y. E. (2017). TFEB inhibits endothelial cell inflammation and reduces atherosclerosis. Science Signaling, 10(464), eaah4214. https://doi.org/10.1126/scisignal.aah4214
- Ma, T., Li, J., Xu, Y., Yu, C., Xu, T., Wang, H., Liu, K., Cao, N., Nie, B.-m., Zhu, S.-y., Xu, S., Li, K., Wei, W.-g., Wu, Y., Guan, K.-l., & Ding, S. (2015). Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nature Cell Biology, 17(11), 1379–1387. https://doi.org/10.1038/ncb3256
- Man, S. M., & Kanneganti, T. D. (2016). Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy, 12(12), 2504–2505. https://doi.org/10.1080/15548627.2016.1239679
- Meng, N., Chen, K., Wang, Y., Hou, J., Chu, W., Xie, S., Yang, F., & Sun, C. (2022). Dihydrohomoplantagin and homoplantaginin, major flavonoid glycosides from Salvia plebeia R. Br. inhibit oxLDL-induced endothelial cell injury and restrict atherosclerosis via activating Nrf2 anti-oxidation signal pathway. Molecules, 27(6), 1990. https://doi.org/10.3390/molecules27061990
- Mok, S. W. F., Zeng, W., Niu, Y., Coghi, P., Wu, Y., Sin, W. M., Ng, S. I., Gordillo-Martínez, F., Gao, J. Y., Law, B. Y. K., Liu, L., Yao, X., & Wong, V. K. W. (2018). A method for rapid screening of anilide-containing AMPK modulators based on computational docking and biological validation. Frontiers in Pharmacology, 9, 710. https://doi.org/10.3389/fphar.2018.00710
- Napolitano, G., & Ballabio, A. (2016). TFEB at a glance. Journal of Cell Science, 129(13), 2475–2481. https://doi.org/10.1242/jcs.146365
- Packer, M. (2020). Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: Implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. Journal of the American Society of Nephrology: JASN, 31(5), 907–919. https://doi.org/10.1681/ASN.2020010010
- Paneni, F., Costantino, S., Castello, L., Battista, R., Capretti, G., Chiandotto, S., D'Amario, D., Scavone, G., Villano, A., Rustighi, A., Crea, F., Pitocco, D., Lanza, G., Volpe, M., Del Sal, G., Lüscher, T. F., & Cosentino, F. (2015). Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: Insights in patients with diabetes. European Heart Journal, 36(13), 817–828. https://doi.org/10.1093/eurheartj/ehu179
- Park, S. H., Kim, J. L., Kang, M. K., Gong, J. H., Han, S. Y., Shim, J. H., Lim, S. S., & Kang, Y. H. (2012). Sage weed (Salvia plebeia) extract antagonizes foam cell formation and promotes cholesterol efflux in murine macrophages. International Journal of Molecular Medicine, 30(5), 1105–1112. https://doi.org/10.3892/ijmm.2012.1103
- Puertollano, R., Ferguson, S. M., Brugarolas, J., & Ballabio, A. (2018). The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. The EMBO Journal, 37(11), e98804. https://doi.org/10.15252/embj.201798804
- Qu, X. J., Xia, X., Wang, Y. S., Song, M. J., Liu, L. L., Xie, Y. Y., Cheng, Y.-N., Liu, X.-J., Qiu, L.-L., Xiang, L., Gao, J.-J., Zhang, X.-F., & Cui, S. X. (2009). Protective effects of Salvia plebeia compound homoplantaginin on hepatocyte injury. Food and Chemical Toxicology, 47(7), 1710–1715. https://doi.org/10.1016/j.fct.2009.04.032
- Ravanan, P., Srikumar, I. F., & Talwar, P. (2017). Autophagy: The spotlight for cellular stress responses. Life Sciences, 188, 53–67. https://doi.org/10.1016/j.lfs.2017.08.029
- Ren, B., Qin, W., Wu, F., Wang, S., Pan, C., Wang, L., Zeng, B., Ma, S., & Liang, J. (2016). Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. European Journal of Pharmacology, 773, 13–23. https://doi.org/10.1016/j.ejphar.2016.01.002
- Rohm, T. V., Meier, D. T., Olefsky, J. M., & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55(1), 31–55. https://doi.org/10.1016/j.immuni.2021.12.013
- Sanchez-Martin, P., Roma-Mateo, C., Viana, R., & Sanz, P. (2015). Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex. International Journal of Biochemistry & Cell Biology, 69, 204–214. https://doi.org/10.1016/j.biocel.2015.10.030
- Shin, H. J. R., Kim, H., Oh, S., Lee, J.-G., Kee, M., Ko, H.-J., Kweon, M.-N., Won, K.-J., & Baek, S. H. (2016). AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature, 534(7608), 553–557. https://doi.org/10.1038/nature18014
- Song, W., Zhang, C. L., Gou, L., He, L., Gong, Y. Y., Qu, D., Zhao, L., Jin, N., Chan, T. F., Wang, L., Tian, X. Y., Luo, J.-Y., & Huang, Y. (2019). Endothelial TFEB (transcription factor EB) restrains IKK (IκB kinase)-p65 pathway to attenuate vascular inflammation in diabetic db/db mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(4), 719–730. https://doi.org/10.1161/ATVBAHA.119.312316
- Sun, T., Li, X., Zhang, P., Chen, W. D., Zhang, H. L., Li, D. D., Deng, R., Qian, X.-J., Jiao, L., Ji, J., Li, Y.-T., Wu, R.-Y., Yu, Y., Feng, G.-K., & Zhu, X. F. (2015). Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nature Communications, 6, 7215. https://doi.org/10.1038/ncomms8215
- Wang, P., Huang, Y. H., Ren, J. Y., Rong, Y. Z., Fan, L. L., Zhang, P., Zhang, X., Xi, J., Mao, S., Su, M., Zhang, B., Bao, G., & Wu, F. H. (2022). Large-leaf yellow tea attenuates high glucose-induced vascular endothelial cell injury by up-regulating autophagy and down-regulating oxidative stress. Food & Function, 13(4), 1890–1905. https://doi.org/10.1039/d1fo03405g
- Wasserman, D. H., Wang, T. J., & Brown, N. J. (2018). The vasculature in prediabetes. Circulation Research, 122(8), 1135–1150. https://doi.org/10.1161/CIRCRESAHA.118.311912
- Watson, E. C., Grant, Z. L., & Coultas, L. (2017). Endothelial cell apoptosis in angiogenesis and vessel regression. Cellular and Molecular Life Sciences, 74(24), 4387–4403. https://doi.org/10.1007/s00018-017-2577-y
- Wu, F. H., Wang, H., Li, J., Liang, J. Y., & Ma, S. P. (2012). Homoplantaginin modulates insulin sensitivity in endothelial cells by inhibiting inflammation. Biological & Pharmaceutical Bulletin, 35(7), 1171–1177. https://doi.org/10.1248/bpb.b110586
- Xi, J. X., Rong, Y. Z., Zhao, Z. F., Huang, Y. H., Wang, P., Luan, H. L., Xing, Y., Li, S., Liao, J., Dai, Y., Liang, J., & Wu, F. H. (2021). Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. Journal of Ethnopharmacology, 271, 113855. https://doi.org/10.1016/j.jep.2021.113855
- Xu, S., Ilyas, I., Little, P. J., Li, H., Kamato, D., Zheng, X., Luo, S., Li, Z., Liu, P., Han, J., Harding, I. C., Ebong, E. E., Cameron, S. J., Stewart, A. G., & Weng, J. (2021). Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacological Reviews, 73(3), 924–967. https://doi.org/10.1124/pharmrev.120.000096
- Yao, F., Zhang, M., & Chen, L. (2016). 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications. Acta Pharmaceutica Sinica B, 6(1), 20–25. https://doi.org/10.1016/j.apsb.2015.07.009
- Yuan, Y. F., Li, X., & Li, M. Q. (2018). Overexpression of miR-17-5p protects against high glucose-induced endothelial cell injury by targeting E2F1-mediated suppression of autophagy and promotion of apoptosis. International Journal of Molecular Medicine, 42(3), 1559–1568. https://doi.org/10.3892/ijmm.2018.3697
- Zhang, L., Deng, X. R., Shi, X., & Dong, X. J. (2019). Silencing H19 regulated proliferation, invasion, and autophagy in the placenta by targeting miR-18a-5p. Journal of Cellular Biochemistry, 120(6), 9006–9015. https://doi.org/10.1002/jcb.28172
- Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews. Endocrinology, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151
- Zheng, Y., Luo, A., & Liu, X. (2021). The imbalance of mitochondrial fusion/fission drives high-glucose-induced vascular injury. Biomolecules, 11(12), 1779. https://doi.org/10.3390/biom11121779
- Zhou, H. Y., Jiang, F., & Leng, Y. F. (2021). Propofol ameliorates ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/AKT/m-TOR pathway: A novel therapeutic strategy in atherosclerosis. Frontiers in Molecular Biosciences, 8, 695336. https://doi.org/10.3389/fmolb.2021.695336
- Zhu, L., Yuan, Y., Yuan, L., Li, L., Liu, F., Liu, J., Chen, Y., Lu, Y., & Cheng, J. (2020). Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics, 10(13), 5829–5844. https://doi.org/10.7150/thno.44051