Second-Harmonic Generation Based on the Dual-Band Second-Order Topological Corner States
Kwang-Kwon Om
Institute of Physics, State Academy of Sciences, Unjong District, Pyongyang, 355 Democratic People's Republic of Korea
Search for more papers by this authorCorresponding Author
Kwang-Hyon Kim
Institute of Physics, State Academy of Sciences, Unjong District, Pyongyang, 355 Democratic People's Republic of Korea
Search for more papers by this authorKwang-Kwon Om
Institute of Physics, State Academy of Sciences, Unjong District, Pyongyang, 355 Democratic People's Republic of Korea
Search for more papers by this authorCorresponding Author
Kwang-Hyon Kim
Institute of Physics, State Academy of Sciences, Unjong District, Pyongyang, 355 Democratic People's Republic of Korea
Search for more papers by this authorAbstract
Coherent frequency conversions using multiband topological edge states in photonic structures made of nonlinear optical materials have been extensively investigated. In practice, however, coherent sources localized at the subwavelength scale are of great importance. Herein, efficient second-harmonic generation (SHG) using dual-band second-order topological corner states is reported. By properly adjusting the structural parameters, dual-band corner states can be obtained in the first and second bandgaps, when the eigenfrequency of the corner state in the higher bandgap is twice that of the corner one in the lower gap. In a square lattice made of tellurium as an example, high SHG efficiency in the order of 10−1% can be obtained for a peak pump intensity of around 20 GW cm−2. The results presented provide the realizability of subwavelength-scale coherent sources, which are robust against the structural disorder or defects.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Research data are not shared.
References
- 1 T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Rev. Mod. Phys. 2019, 91, 015006.
- 2 M. S. Rider, S. J. Palmer, S. R. Pocock, X. Xiao, P. A. Huidobro, V. Giannini, J. Appl. Phys. 2019, 125, 120901.
- 3 D. Smirnova, D. Leykam, Y. Chong, Y. Kivshar, Appl. Phys. Rev. 2020, 7, 021306.
- 4 M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045.
- 5 F. D. M. Haldane, S. Raghu, Phys. Rev. Lett. 2008, 100, 013904.
- 6 S. Raghu, F. D. M. Haldane, Phys. Rev. A 2008, 78, 033834.
- 7 Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljiačić, Nature 2009, 461, 772.
- 8 M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor, Nat. Phys. 2011, 7, 907.
- 9 A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets, Nat. Mater. 2013, 12, 233.
- 10 L.-H. Wu, X. Hu, Phys. Rev. Lett. 2015, 114, 223901.
- 11 T. Ma, G. Shvets, New J. Phys. 2016, 18, 025012.
- 12 M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, N. M. Litchinitser, Nat. Nanotechnol. 2019, 14, 31.
- 13 Q. Chen, L. Zhang, M. He, Z. Wang, X. Lin, F. Gao, Y. Yang, B. Zhang, H. Chen, Adv. Opt. Mater. 2019, 7, 1900036.
- 14 Y. Kang, X. Ni, X. Cheng, A. B. Khanikaev, A. Z. Genack, Nat. Commun. 2019, 9, 3029.
- 15 X. Xi, K.-P. Ye, R.-X. Wu, Photonics Res. 2020, 8, B1.
- 16 K.-H. Kim, K.-K. Om, Adv. Opt. Mater. 2021, 9, 202001865.
- 17 D. Leykam, Y. D. Chong, Phys. Rev. Lett. 2016, 117, 143901.
- 18 V. Peano, M. Houde, F. Marquardt, A. A. Clerk, Phys. Rev. X 2016, 6, 041026.
- 19 S. Mittal, E. A. Goldschmidt, M. Hafezi, Nature 2018, 561, 502.
- 20 D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, Y. S. Kivshar, Phys. Rev. Lett. 2018, 121, 163901.
- 21 D. Smirnova, S. Kruk, D. Leykam, E. Melik-Gaykazyan, D.-Y. Choi, Y. Kivshar, Phys. Rev. Lett. 2019, 123, 103901.
- 22 M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan, Science 2018, 359, 1231.
- 23 Y. Gong, S. Wong, A. J. Bennett, D. L. Huffaker, S. S. Oh, ACS Photonics 2020, 7, 2089.
- 24 H. Zhong, Y. Li, D. Song, Y. V. Kartashov, Y. Zhang, Y. Zhang, Z. Chen, Laser Photonics Rev. 2020, 14, 2000001.
- 25 W. A. Benalcazar, B. A. Bernevig, T. L. Hughes, Phys. Rev. B 2017, 96, 245115.
- 26 W. A. Benalcazar, B. A. Bernevig, T. L. Hughes, Science 2017, 357, 61.
- 27
B. A. Bernevig, T. L. Hughes, Topological Insulators And Topological Superconductors, Princeton University Press, Princeton, NJ, USA 2013.
10.1515/9781400846733 Google Scholar
- 28 B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang, M.-H. Lu, Y.-F. Chen, Phys. Rev. B 2018, 98, 205147.
- 29 K.-H. Kim, Ann. Phys. 2021, 533, 2100075.
- 30 K.-K. Om, K.-H. Kim, Phys. Status Solidi B 2021, 258, 2100202.
- 31 S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, M. Hafezi, Nat. Photonics 2019, 13, 692.
- 32 X. Zhou, Z.-K. Lin, W. Lu, Y. Lai, B. Hou, J.-H. Jiang, Laser Photonics Rev. 2020, 14, 2000010.
- 33 Y. Chen, Z.-K. Lin, H. Chen, J.-H. Jiang, Phys. Rev. B 2020, 101, 041109.
- 34 B.-Y. Xie, G.-X. Su, H.-F. Wang, H. Su, X.-P. Shen, P. Zhan, M.-H. Lu, Z.-L. Wang, Y.-F. Chen, Phys. Rev. Lett. 2019, 122, 233903.
- 35 A. E. Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz, M. Bourennane, Nat. Photonics 2019, 13, 697.
- 36 L. Zhang, Y. Yang, Z.-K. Lin, P. Qin, Q. Chen, F. Gao, E. Li, J.-H. Jiang, B. Zhang, H. Chen, Adv. Sci. 2020, 7, 1902724.
- 37 W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, X. Xu, Light Sci. Appl. 2020, 9, 109.
- 38 X. Xie, W. Zhang, X. He, S. Wu, J. Dang, K. Peng, F. Song, L. Yang, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, X. Xu, Laser Photonics Rev. 2020, 14, 1900425.
- 39 S.-Y. Huo, J.-J. Chen, H.-B. Huang, G.-L. Huang, Sci. Rep. 2017, 7, 10335.
- 40 Z. Lan, J. W. You, N. C. Panoiu, Phys. Rev. B 2020, 101, 155422.
- 41 Z. Lan, J. W. You, Q. Ren, W. E. I. Sha, N. C. Panoiu, Phys. Rev. A 2020, 103, L041502.
- 42 C. Qian, K. H. Choi, R. P. H. Wu, Y. Zhang, K. Guo, K. H. Fung, Opt. Express 2018, 26, 5083.
- 43 S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, Y. Kivshar, Nat. Nanotechnol. 2019, 14, 126.
- 44 H.-R. Kim, M.-S. Hwang, D. Smirnova, K.-Y. Jeong, Y. Kivshar, H.-G. Park, Nat. Commun. 2020, 11, 5758.
- 45
V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook Of Nonlinear Optical Crystals, 3rd ed., Springer, Berlin, Germany 1999.
10.1007/978-3-540-46793-9 Google Scholar
- 46 F. Liu, H.-Y. Deng, K. Wakabayashi, Phys. Rev. B 2018, 97, 035442.
- 47 Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, S. Iwamoto, Optica 2019, 6, 786.