Revisiting Stabilities of Cubic Zincblende IV-IV Materials From Density Functional Theory
N. Hammou
Dr. N. Hammou, Prof. M. Ferhat, Département de Génie Physique, (LPMF), Faculté des Sciences, Université des Sciences et de la Technologie d'Oran, Mohamed Boudiaf, USTO-MB, Oran, Algeria
Search for more papers by this authorCorresponding Author
A. Zaoui
Prof. A. Zaoui, LGCgE, Polytech'Lille, Université Lille 1 Sciences et Technologies, Cité Scientifique, Avenue Paul Langevin, 59655 Villeneuve D'Ascq Cedex, France
Search for more papers by this authorM. Ferhat
Dr. N. Hammou, Prof. M. Ferhat, Département de Génie Physique, (LPMF), Faculté des Sciences, Université des Sciences et de la Technologie d'Oran, Mohamed Boudiaf, USTO-MB, Oran, Algeria
Search for more papers by this authorN. Hammou
Dr. N. Hammou, Prof. M. Ferhat, Département de Génie Physique, (LPMF), Faculté des Sciences, Université des Sciences et de la Technologie d'Oran, Mohamed Boudiaf, USTO-MB, Oran, Algeria
Search for more papers by this authorCorresponding Author
A. Zaoui
Prof. A. Zaoui, LGCgE, Polytech'Lille, Université Lille 1 Sciences et Technologies, Cité Scientifique, Avenue Paul Langevin, 59655 Villeneuve D'Ascq Cedex, France
Search for more papers by this authorM. Ferhat
Dr. N. Hammou, Prof. M. Ferhat, Département de Génie Physique, (LPMF), Faculté des Sciences, Université des Sciences et de la Technologie d'Oran, Mohamed Boudiaf, USTO-MB, Oran, Algeria
Search for more papers by this authorAbstract
The electronic structure of cubic zincblende (ZB) IV-IV compounds are treated traditionally through first-principles models neglecting relativistic effects, regardless the presence of heavier atoms like Ge, Sn, or Pb. Applying relativistic first-principles plane wave pseudopotential methods, we revisit here the thermodynamic and dynamical stability of ZB-IV-IV materials: SiC, GeC, SnC, PbC, SiGe, SiSn, SiPb, GeSn, PbGe, and PbSn. Our results evince that except 3C-SiC, all other IV-IV compounds in the ZB phase exhibit positive formation enthalpy, thus manifesting thermodynamic instability. PbC, and SnC divulge huge thermodynamic instability, due to the high value of their elastic strain formation energy; whereas SiGe, GeSn, and PbSn show weak thermodynamic instability due to their insufficient chemical formation energy. Furthermore, except 3C-SiC, we found that all other ZB-IV-IV compounds are dynamically unstable.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 J. L. Martins, A. Zunger, Phys. Rev. Lett. 1986, 56, 1400.
- 2 U. Schmid, N. E. Christensen, M. Cardona, Phys. Rev. B 1990, 41, 5919.
- 3 R. A. Soref, J. Appl. Phys. 1992, 72, 626.
- 4 T. Brudevoll, D. S. Citrin, N. E. Christensen, M. Cardona, Phys. Rev. B 1993, 48, 17128.
- 5 O. F. Sankey, A. A. Demkov, W. T. Petuskey, P. F. McMillan, Modell. Simul. Mater. Sci. Eng. 1993, 1, 741.
- 6 J. L. Corkill, M. L. Cohen, Phys. Rev. B 1993, 47, 10304.
- 7 H. Rücker, M. Methfessel, Phys. Rev. B 1995, 52, 11059.
- 8 A. Zaoui, M. Ferhat, M. Certier, B. Khelifa, H. Aourag, Infr. Phys. and Tech. 1996, 37, 483.
- 9 R. Pandey, M. Rérat, M. Causà, Appl. Phys. Lett. 1999, 75, 4127.
- 10 R. Pandey, M. Rérat, C. Darrigan, M. Causà, J. Appl. Phys. 2000, 88, 6462.
- 11 S. Q. Wang, H. Q. Ye, Phys. Rev. B 2002, 66, 235111.
- 12
W. Sekkal,
A. Zaoui,
New J. of Phys.
2002,
4, 9.1.
10.1088/1367-2630/4/1/309 Google Scholar
- 13 A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, R. Liu, J. Appl. Phys. 2010, 108, 063531.
- 14 N. Kaurav, Phys. Scr. 2013, 88, 015604.
- 15 G. He, H. A. Atwater, Phys. Rev. Lett. 1997, 79, 1937.
- 16 V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, Phys. Rev. B 2006, 73, 125207.
- 17 J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, J. Menéndez, Appl. Phys. Lett. 2014, 105, 142102.
- 18 S. Yu. Shiryaev, J. Lundsgaard Hansen, P. Kringhoj, A. Nylandsted Larsen, Appl. Phys. Lett. 1995, 67, 2287.
- 19 R. Ragan, K. S. Min, H. A. Atwater, Mat. Science and Eng. B 2001, 87, 204.
- 20 P. I. Gaiduk, J. Lundsgaard Hansen, A. Nylandsted Larsen, F. L. Bregolin, W. Skorupa, Appl. Phys. Lett. 2014, 104, 231903.
- 21 S. Y. Park, J. D'Arcy-Gall, D. Gall, Y.-W. Kim, P. Desjardins, J. E. Greene, J. Appl. Phys. 2002, 91, 3644.
- 22 M. Oehme, J. Werner, O. Kirfel, E. Kasper, Appl. Surface Science 2008, 254, 6238.
- 23 T. Wendav, I. A. Fischer, M. Montanari, M. H. Zoellner, W. Klesse, G. Capellini, N. von den Driesch, M. Oehme, D. Buca, K. Bush, J. Schulze Appl. Phys. Lett. 2016, 108, 242104.
- 24 X. Zhang, C. Ying, Z. Li, G. Shi, Superlatice and Microstruct. 2012, 52, 459.
- 25 M. Souadkia, B. Bennecer, F. Kalarasse, J. of Phys. and Chem. of Solids 2013, 74, 1615.
- 26 X. Zhang, S. Quan, C. Ying, Z. Li, Solid State Commun. 2011, 151, 1545.
- 27 S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, http://www.pwscf.org
- 28 J. P. Perdew, A. Zunger, Phys. Rev. B 1981, 23, 5048.
- 29 A. Dal Corso, Phys. Rev. B 2007, 76, 054308.
- 30 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 31 D. R. Lide, CRC Handbook of Chemistry and Physics, 73rd. Chemical Rubber, Boca Raton 1993.
- 32 I. V. Aleksandov, A. F. Goncharov, A. N. Zisman, S. M. Stishov, Sov. Phys. JETP 1987, 66, 384.
- 33 M. Levinstein, S. Rumyantsev, M. Shur, (Eds.), Handbook Series on Semiconductor Parameters, Vol. 1 and 2, World Scientific, Singapore 1996.
- 34 C. J. Buchenauer, M. Cardona, F. H. Pollak, Phys. Rev. B 1971, 3, 1243.
- 35 O. Madelung, M. Schulz, M. Weiss, (Eds.), Physics of Group IV Elements and III-V compounds, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a Springer, Berlin 1982.
- 36 R. D. Carnahan, J. Am. Ceram. Soc. 1968, 51, 223.
- 37 D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, R. H. Schumm, Selected Values of Chemical Thermodynamic Properties, Tables for the First Thirty-Four Elements in the Standard Order of Arrangement, National Bureau of Standards Technical Note No. 270-3 (U.S. GPO, Washington, D.C., 1968).
- 38 N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, J. Kolodzey, Appl. Phys. Lett. 2013, 103, 041908.
- 39 V. R. D'Costa, W. Wang, Y.-C. Yeo, J. Appl. Phys. 2016, 120, 063104.
- 40 F. Coppari, A. Polian, N. Menguy, A. Trapananti, A. Congeduti, M. Newville, V. B. Prakapenka, Y. Choi, E. Principi, A. Di Cicco, Phys. Rev. B 2012, 85, 045201.
- 41 N. T. Giang, L. T. Cong, N. D. Dung, T. V. Quang, N. N. Ha, J. of Phys. and Chem. of Solids 2016, 93, 121.
- 42 M. Kurosawa, M. Kato, T. Yamaha, N. Taoka, O. Nakatsuka, S. Zaima, Appl. Phys. Lett. 2015, 106, 171908.
- 43 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvsnicka, J. Luitz, Wien2k, An Augmented Plane Wave Program for Calculating Crystal Proprietes (Vienna, University of Technology, Vienna, Austria, 2001).
- 44 F. Tran, P. Blaha, Phys. Rev. Lett. 2009, 102, 226401.
- 45 W. R. L. Lambrecht, B. Segall, M. Yoganathan, W. Suttrop, R. P. Devaty, W. J. Choyke, J. A. Edmond, J. A. Powell, M. Alouani, Phys. Rev. B 1994, 50, 10722.
- 46 J. Serrano, J. Strempfer, M. Cardona, M. S. −Böhning, H. Requardt, M. Lorenzen, B. Stojetz, P. Pavone, W. J. Choyke, Appl. Phys. Lett. 2002, 80, 4360.