High-pressure optical study of small-diameter chirality-enriched single-wall carbon nanotubes
M. Krottenmüller
Experimentalphysik 2, Universität Augsburg, 86159 Augsburg, Germany
Search for more papers by this authorW. Gao
Department of Electrical and Computer Engineering, Department of Physics and Astronomy, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
Search for more papers by this authorB. Anis
Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (former El Tahrir st.), P. O. 12622, Dokki, Giza, Egypt
Search for more papers by this authorJ. Kono
Department of Electrical and Computer Engineering, Department of Physics and Astronomy, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
Search for more papers by this authorCorresponding Author
C. A. Kuntscher
Experimentalphysik 2, Universität Augsburg, 86159 Augsburg, Germany
Corresponding author: e-mail [email protected], Phone: +49-(0)821 598 3315, Fax: +49-(0)821 598 3411Search for more papers by this authorM. Krottenmüller
Experimentalphysik 2, Universität Augsburg, 86159 Augsburg, Germany
Search for more papers by this authorW. Gao
Department of Electrical and Computer Engineering, Department of Physics and Astronomy, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
Search for more papers by this authorB. Anis
Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (former El Tahrir st.), P. O. 12622, Dokki, Giza, Egypt
Search for more papers by this authorJ. Kono
Department of Electrical and Computer Engineering, Department of Physics and Astronomy, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
Search for more papers by this authorCorresponding Author
C. A. Kuntscher
Experimentalphysik 2, Universität Augsburg, 86159 Augsburg, Germany
Corresponding author: e-mail [email protected], Phone: +49-(0)821 598 3315, Fax: +49-(0)821 598 3411Search for more papers by this authorAbstract
We have investigated the mechanical stability of small-diameter single-wall carbon nanotube (SWCNT) films via optical absorption spectroscopy under high pressure. The studied sample was enriched in (6,5) SWCNTs, in order to observe sharp optical transitions even at high pressures. We observed two well-defined absorption bands in the studied frequency range, both of which red-shifted with increasing pressure. The rate of the pressure-induced red shift of one absorption band was found to change dramatically at 8 GPa, which we interpret as a structural phase transition of the nanotubes’ cross-section from circular to oval. By comparing the data with that for a film of mixed-chirality SWCNTs with an average diameter of 1.4 nm, we conclude that smaller-diameter SWCNTs have higher mechanical stability, which is consistent with theoretical expectations. No collapse of (6,5) SWCNTs was observed up to 22 GPa.
References
- 1 A. Jorio, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH Verlag, Weinheim, (2011)).
- 2 J. Tang, L. C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S. Iijima, Phys. Rev. Lett. 85, 1887–1889 (2000).
- 3 S. M. Sharma, S. Karmakar, S. K. Sikka, P. V. Teredesai, A. K. Sood, A. Govindaraj, and C. N. R. Rao, Phys. Rev. B 63, 205417 (2001).
- 4 A. K. Sood, P. V. Teresdesai, D. V. S. Muthu, R. Sen, A. Govindaraj, and C. N. R. Rao, Phys. Status Solidi B 215, 393–401 (1999).
- 5 S. Reich, H. Jantoljak, and C. Thomsen, Phys. Rev. B 61, R13389–R13392 (2000).
- 6 S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, and M. M. Kappes, Phys. Rev. B 73, 94109 (2006).
- 7 C. Caillier, D. Machon, A. San-Miguel, R. Arenal, G. Montagnac, H. Cardon, M. Kalbac, M. Zukalova, and L. Kavan, Phys. Rev. B 77, 125418 (2008).
- 8 A. C. Torres-Dias, S. Cambré, W. Wenseleers, D. Machon, and A. San-Miguel, Carbon 95, 442–451 (2015).
- 9 K. Thirunavukkuarasu, F. Hennrich, K. Kamarás, and C. A. Kuntscher, Phys. Rev. B 81, 45424 (2010).
- 10 B. Anis, F. Börrnert, M. H. Rümmeli, and C. A. Kuntscher, J. Phys. Chem. C 117, 21995–22001 (2013).
- 11 B. Anis, F. Börrnert, M. H. Rümmeli, Kuntscher, and C. A., J. Phys. Chem. C 118, 27048–27062 (2014).
- 12 A. L. Aguiar, E. B. Barros, R. B. Capaz, A. G. S. Filho, P. T. C. Freire, J. M. Filho, D. Machon, C. Caillier, Y. A. Kim, H. Muramatsu, M. Endo, and A. San-Miguel, J. Phys. Chem. C 115, 5378–5384 (2011).
- 13 B. Anis, K. Haubner, F. Börrnert, L. Dunsch, M. H. Rümmeli, and C. A. Kuntscher, Phys. Rev. B 86, 155454 (2012).
- 14 R. S. Alencar, A. L. Aguiar, A. R. Paschoal, P. T. C. Freire, Y. A. Kim, H. Muramatsu, M. Endo, H. Terrones, M. Terrones, A. San-Miguel, M. S. Dresselhaus, and A. G. S. Filho, J. Phys. Chem. C 118, 8153–8158 (2014).
- 15 R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, and S. G. Louie, Phys. Status Solidi B 241, 3352 (2004).
- 16 M. Hasegawa and K. Nishidate, Phys. Rev. B 74, 115401 (2006).
- 17 T. F. Cerqueira, S. Botti, A. San-Miguel, and M. A. Marques, Carbon 69, 355–360 (2014).
- 18 R. B. Weisman and S. M. Bachilo, Nano Lett. 3, 1235–1238 (2003).
- 19 M. C. Hersam, Nature Nanotechnol. 3, 387–394 (2008).
- 20 M. Kawai, H. Kyakuno, T. Suzuki, T. Igarashi, H. Suzuki, T. Okazaki, H. Kataura, Y. Maniwa, and K. Yanagi, J. Am. Chem. Soc. 134, 9545–9548 (2012).
- 21 H. Liu, D. Nishide, T. Tanaka, and H. Kataura, Nature Commun. 2, 309 (2011).
- 22 X. Tu, S. Manohar, A. Jagota, and M. Zheng, Nature 460, 250–253 (2009).
- 23 F. Yang, X. Wang, D. Zhang, J. Yang, Luoda, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Nature 510, 522–524 (2014).
- 24 J. A. Fagan, C. Y. Khripin, C. A. Silvera Batista, J. R. Simpson, E. H. Hároz, A. R. Hight Walker, and M. Zheng, Adv. Mater. 26, 2800–2804 (2014).
- 25 X. He, W. Gao, L. Xie, B. Li, Q. Zhang, S. Lei, J. M. Robinson, E. H. Hároz, S. K. Doorn, W. Wang, R. Vajtai, P. M. Ajayan, W. W. Adams, R. H. Hauge, and J. Kono, Nature Nanotechnol. 11, 633–638 (2016).
- 26 Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273–1276 (2004).
- 27 W. Wenseleers, S. Cambré, J. Čulin, A. Bouwen, and E. Goovaerts, Adv. Mater. 19, 2274–2278 (2007).
- 28 G. Huber, K. Syassen, and W. B. Holzapfel, Phys. Rev. B 15, 5123–5128 (1977).
- 29 H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res.: Solid Earth 91, 4673–4676 (1986).
- 30 S. Klotz, J. C. Chervin, P. Munsch, and G. Le Marchand, J. Phys. D: Appl. Phys. 42, 75413 (2009).
- 31 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 61, 2981–2990 (2000).
- 32 H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synth. Met. 103, 2555–2558 (1999).
- 33 J. C. Charlier, P. Lambin, and T. W. Ebbesen, Phys. Rev. B 54, R8377–R8380 (1996).
- 34 G. Liu, X. Wang, J. Chen, and H. Lu, Phys. Status Solidi B 245, 689–694 (2008).
- 35 M. Levy, J. Math. Ser. 3, 7 (1884).
- 36 J. A. Elliott, J. K. W. Sandler, A. H. Windle, R. J. Young, and M. S. P. Shaffer, Phys. Rev. Lett. 92, 95501 (2004).
- 37 S. Reich, C. Thomsen, and P. Ordejón, Phys. Status Solidi B 235, 354–359 (2003).
- 38 D. Y. Sun, D. J. Shu, M. Ji, F. Liu, M. Wang, and X. G. Gong, Phys. Rev. B 70, 165417 (2004).
- 39 C. A. Kuntscher, A. Abouelsayed, K. Thirunavukkuarasu, and F. Hennrich, Phys. Status Solidi B 247, 2789–2792 (2010).
- 40 B. Anis, F. Börrnert, M. H. Rümmeli, and C. A. Kuntscher, Phys. Status Solidi B 250, 2616–2621 (2013).
- 41 Y. Miyata, K. Mizuno, and H. Kataura, J. Nanomater. 2011, 18:1–18:7 (2011).
- 42 S. B. Fagan, L. B. da Silva, and R. Mota, Nano Lett. 3, 289–291 (2003).
- 43 S. P. Chan, W. L. Yim, X. G. Gong, and Z. F. Liu, Phys. Rev. B 68, 75404 (2003).
- 44 O. Gülseren, T. Yildirim, S. Ciraci, and C. Kilic, Phys. Rev. B 65, 155410 (2002).