Design of Electromagnetic Shielding Textiles Based on Industrial-Grade Multiwalled Carbon Nanotubes and Graphene Nanoplatelets by Dip-Pad-Dry Process
Ana R. Sousa
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorRenata Matos
REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorJosé R. M. Barbosa
LSRE-LCM, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorJoão Ferreira
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorGilda Santos
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorAugusta Silva
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorJosé Morgado
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorPatrícia Soares
Cottonanswer, Rua dos Combatentes do Ultramar, 50, 4750-047 Lijó, Barcelos, Portugal
Search for more papers by this authorSergey A. Bunyaev
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorGleb N. Kakazei
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorRui Vilarinho
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorOlívia Salomé Soares
LSRE-LCM, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorManuel Fernando Pereira
LSRE-LCM, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorCristina Freire
REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorCorresponding Author
Clara Pereira
REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorCorresponding Author
André M. Pereira
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorAna R. Sousa
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorRenata Matos
REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorJosé R. M. Barbosa
LSRE-LCM, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorJoão Ferreira
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorGilda Santos
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorAugusta Silva
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorJosé Morgado
CITEVE – Technological Centre for the Textile and Clothing Industry of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
Search for more papers by this authorPatrícia Soares
Cottonanswer, Rua dos Combatentes do Ultramar, 50, 4750-047 Lijó, Barcelos, Portugal
Search for more papers by this authorSergey A. Bunyaev
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorGleb N. Kakazei
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorRui Vilarinho
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorOlívia Salomé Soares
LSRE-LCM, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorManuel Fernando Pereira
LSRE-LCM, Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Search for more papers by this authorCristina Freire
REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorCorresponding Author
Clara Pereira
REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorCorresponding Author
André M. Pereira
IFIMUP - Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics and Astronomy Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Search for more papers by this authorAbstract
Textile-based shields are one of the most used solutions for electromagnetic interference (EMI) shielding in the radiofrequency range for several applications, such as personal protection, military, and aircraft. Herein, EMI textile shields are produced based on knitted cotton textile substrates (Jersey and American Fleece) coated with industrial-grade multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs). An easy and scalable dip-pad-dry process is used to fabricate the textile-based shields. The shielding effectiveness (SE) is evaluated over the frequency range of 5.85–18 GHz. The MWCNT-coated American Fleece fabric presents the highest EMI shielding, with an average SE of ≈35.6 dB, which corresponds to an excellent classification for general use applications. Additionally, the electrical properties of the carbon nanomaterials and the thickness of the shields reveal to be correlated with an EMI shielding process mostly through radiation absorption mechanism. Numerical simulations are used to further assist in a thorough investigation regarding the influence of the electrical properties of the nanomaterials on the SE of the resulting coated fabrics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1H. C. Cheng, C. R. Chen, S. Hsu, K. B. Cheng, Sustainability 2020, 12, 5899.
- 2M. Jaroszewski, S. Thomas, A. V. Rane, in Advanced Materials for Electromagnetic Shielding, John Wiley & Sons, Inc., Hoboken, NJ 2018.
10.1002/9781119128625 Google Scholar
- 3M. González, G. Mokry, M. de Nicolás, J. Baselga, J. Pozuelo, in Carbon Nanotubes - Current Progress of their Polymer Composites, InTech, London, UK 2016, https://doi.org/10.5772/62508.
- 4P. Saini, M. Aror, in New Polymers for Special Applications (Ed: A. De Souza Gomes), InTech, London, UK 2012, p. 79, https://doi.org/10.5772/48779.
- 5Y. K. Hong, C. Y. Lee, C. K. Jeong, D. E. Lee, K. Kim, J. Joo, Rev. Sci. Instrum. 2003, 74, 1098.
- 6C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Carbon 2018, 140, 696.
- 7O. Pitkänen, J. Tolvanen, I. Szenti, Á. Kukovecz, J. Hannu, H. Jantunen, K. Kordas, ACS Appl. Mater. Interfaces 2019, 11, 19331.
- 8K. Jagatheesan, A. Ramasamy, A. Das, A. Basu, Text. Prog. 2015, 47, 87.
- 9J. Baltušnikaitė-Guzaitienė, S. Varnaitė-Žuravliova, in Advanced Materials for Electromagnetic Shielding, John Wiley & Sons, Inc. 2018, pp. 219–220, https://doi.org/10.1002/9781119128625.ch10.
10.1002/9781119128625.ch10 Google Scholar
- 10N. Khair, R. Islam, H. Shahariar, J. Mater. Sci. 2019, 54, 10079.
- 11 StatNano, Nanomaterials and Morphologies, https://statnano.com/nanomaterials (accessed: September, 2021).
- 12K. Huang, M. Chen, G. He, X. Hu, W. He, X. Zhou, Y. Huang, Z. Liu, Carbon 2020, 157, 466.
- 13S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana, P. K. Maji, N. Singha, N. C. Das, J. Mater. Sci. Mater. Electron., 2018, 29, 10177.
- 14Y.-J. Chen, Y. Li, B. T. T Chu, I.-T. Kuo, M. Yip, N. Tai, Compos. Part B Eng. 2015, 70, 231.
- 15D. Zhang, H. Yang, J. Pan, B. Lewis, W. Zhou, K. Cai, A. Benatar, L. J. Lee, J. M. Castro, Compos. Part B Eng.,2020, 182, 107646.
- 16S. Mondal, S. Ganguly, P. Das, P. Bhawal, T. K. Das, L. Nayak, D. Khastgir, N. C. Das, Cellulose 2017, 24, 5117.
- 17T.-W. Lee, S.-E. Lee, Y. G. Jeong, Compos. Sci. Technol., 2016, 131, 77.
- 18J. Ma, Q. Zhao, Y. Zhou, P. He, H. Pu, B. Song, S. Pan, Y. Wang, C. Wang, Polym. Test 2021, 100, 107240.
- 19S. Zhu, M. Wang, Z. Qiang, J. Song, Y. Wang, Y. Fan, Z. You, Y. Liao, M. Zhu, C. Ye, Chem. Eng. J. 2021, 406, 127140.
- 20L. Zou, L. Yao, Y. Ma, X. Li, S. Sailimujiang, Y. Qiu, J. Appl. Polym. Sci. 2014, 131, 40588.
- 21P. C. Henriques, A. T. Pereira, A. L. Pires, A. M. Pereira, F. D. Magalhães, I. C. Gonçalves, ACS Appl. Mater. Interfaces 2020, 12, 21020.
- 22S. P. Sharma Rajul, C. Neakanshika, Indian J. Pure Appl. Phys. 2017, 55, 625.
- 23S. L. H Rebelo, A. Guedes, M. E. Szefczyk, A. M. Pereira, J. P. Araújo, C. Freire, Phys. Chem. Chem. Phys. 2016, 18, 12784.
- 24R. S. Costa, A. Guedes, A. M. Pereira, C. Pereira, J. Mater. Sci. 2020, 55, 10121.
- 25S. Roscher, R. Hoffmann, O. Ambacher, Anal. Methods 2019, 11, 1224.
- 26G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, Z. Bao, Nano Lett. 2011, 11, 2905.
- 27L. Hu, M. Pasta, F. La Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, Y. Cui, Nano Lett. 2010, 10, 708.
- 28B. Galindo, S. G. Alcolea, J. Gómez, A. Navas, A. O. Murguialday, M. P. Fernandez, R. C. Puelles, IOP Conf. Ser. Mater. Sci. Eng. 2014, 64, 012008.
- 29S. Gupta, N.-H. Tai, Carbon 2019, 152, 159.
- 30M. R. Zakaria, M. H. Abdul Kudus, H. Md. Akil, M. Z. Mohd Thirmizir, Compos. Part B Eng. 2017, 119, 57.
- 31S. Palanisamy, V. Tunakova, J. Militky, Text. Res. J. 2018, 88, 1992.
- 32M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C. B. Park, ACS Appl. Mater. Interfaces. 2018, 10, 30752.
- 33C. Liang, H. Qiu, Y. Han, H. Gu, P. Song, L. Wang, J. Kong, D. Cao, J. Gu, J. Mater. Chem. C. 2019, 7, 2725.
- 34M. F. Shakir, A. N. Khan, R. Khan, S. Javed, A. Tariq, M. Azeem, A. Riaz, A. Shafqat, H. M. Cheema, M. A. Akram, I. Ahmad, R. Jan, Results Phys. 2019, 14, 102365.
- 35 FTTS-FA-003 Test Method of Specified Requirements of Electromagnetic Shielding Textiles, 2005, 1–4.
- 36 ECHA, Multi-Walled Carbon Nanotubes (MWCNT), synthetic graphite in tubular shape - Toxicological Summary, https://echa.europa.eu/registration-dossier/-/registered-dossier/13454/7/1 (accessed October, 2021).
- 37 ECHA, Graphene - Toxicological Information, https://echa.europa.eu/registration-dossier/-/registered-dossier/24678/7/3/1 (accessed October, 2021).
- 38S. P. B Sousa, T. Peixoto, R. M. Santos, A. Lopes, M. da C. Paiva, A. T. Marques, J. Compos. Sci., 2020, 4 106.
- 39 D 5568-08 - Standard Test Method for Measuring Relative Complex Permittivity and Relativa Magnetic Permeability of Solid Materials at Microwave Frequencies Using Waveguides, 2008.