Selective porosification of n-InP(100) after focused ion beam implantation of Si++
G. Champion
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorG. I. Sproule
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorS. Moisa
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorJ. W. Fraser
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorM. J. Graham
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorP. Schmuki
Department of Material Science, LKO, University of Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen, Germany
Search for more papers by this authorG. Champion
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorG. I. Sproule
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorS. Moisa
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorJ. W. Fraser
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorM. J. Graham
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Search for more papers by this authorP. Schmuki
Department of Material Science, LKO, University of Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen, Germany
Search for more papers by this authorAbstract
Selective pore formation can be electrochemically initiated on n-type InP(100) on presensitized surfaces. To create this presensitization, defect patterns were written into the surface by focused ion beam (FIB) implantation of Si++. These implant sites represent initiation sites for pore growth or for selective material dissolution in the patterns, if anodic polarization is carried out positive to the pore formation potential (PFP) of the defective surface but cathodic to the PFP of the intact surface. A variety of internal and external factors were found to influence the selectivity of the process. Parameters that significantly affect the morphology are polarization voltage, implantation dosage, the time and the anion present in the electrolyte. In the present work it is shown, that pore formation in 1 M HF only occurs for a small potential range and a certain dosage range of the implanted Si++ ions. At other potentials or dosages, a homogenous dissolution of the implanted patterns takes place. Apart from direct selective porosification of InP surfaces, the process described can be used for a selective surface patterning.
References
- [1]
A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 9091 (1997).
10.1063/1.366536 Google Scholar
- [2] Whole edition of J. Lumin. 57 (1993).
- [3] S. M. Prokes, Interface 3, 41 (1994).
- [4] S. Wolf and R. N. Tauber, Silicon Processing, Vol. 1, (Lattice Press, Sunset Beach, CA, 1986).
- [5] Y. Hayafuji, K. Kajiwara, and S. Usui, J. Appl. Phys. 53, 8639 (1982).
- [6] C. J. Varker and K. Ravi, J. Appl. Phys. 45, 272 (1974).
- [7] G. H. Schwuttke, K. Brock, and E. W. Hearn, Microelectron. Reliab. 10, 467 (1971).
- [8] G. R. Brooker and R. Stickler, Philos. Mag. 13, 71 (1966).
- [9] C. Tsai, K. H. Li, J. C. Campbell, B. K. Hance, M. F. Arendt, J. M. White, S.-L. Yau, and A. J. Bard, J. Electron. Mater. 21, 995 (1992).
- [10] Y. Nakagawa, A. Ishitani, T. Takahagi, H. Kuroda, H. Tokumoto, M. Ono, and K. Kajimura, J. Vac. Sci. Technol. A8, 262 (1990).
- [11] M. Niwa, H. Iwasaki, and S. Hasegawa, J. Vac. Sci. Technol. A8, 266 (1990).
- [12] G. B. Amisola, R. Behrensmeier, J. M. Galligan, F. A. Otter, F. Namawar, and N. M. Kalkoran, Appl. Phys. Lett. 61, 2595 (1992).
- [13] G. B. Amisola, R. Behrensmeier, J. M. Galligan, F. A. Otter, F. Namawar, and N. M. Kalkoran, J. Vac. Sci. Technol. B11, 1788 (1993).
- [14] S. L. Yau, F.-R. F. Fan, and A. J. Bard, J. Electrochem. Soc. 139, 2825 (1992).
- [15] E. Ettedgui, C. Peng, L. Tsybeskov, Y. Gao, P. M. Fauchet, G. E. Carver, and H. A. Mizes, Mat. Res. Soc. Symp. Proc. Vol. 283, 173 (1993).
- [16] M. Enachescu, E. Hartmann, A. Kux, and F. Koch, J. Lumin. 57, 191 (1993).
- [17] Proc. Of the Symposium “Pits and Pores: Formation, Properties and Significance for Advanced Luminescent Materials”, edited by P. Schmuki, D. J. Lockwood, H. S. Isaacs, and A. Bsiesy, The Electrochemical Society, PV 97-7 (1997).
- [18] A. I. Belogrokhov, V. A. Karavanskii, A. N. Obratztsov, and V. Yu. Timoshenko, JETP Lett. 60, 275 (1994).
- [19] B. H. Erné, D. Vanmaekelbergh, and J. J. Kelly, Adv. Mater. 8, 739 (1995).
- [20] A. Aredda, A. Serpi, V. A. Karravanskii, I. M. Tiginyanu, V. M. Ichizli, Appl. Phys. Lett. 67, 3316 (1995).
- [21] I. M. Tiginyanu, V. V. Ursaki, V. A. Karavanskii, V. N. Sokolov, Y. S. Raptis, and E. Anastassakis, Solid State Commun. 97, 675 (1996).
- [22] B. H. Erné, D. Vanmaekelbergh, and J. J. Kelly, J. Electrochem. Soc. 143, 305 (1996).
- [23] A. Meyerink, A. A. Bol, and J. J. Kelly, Appl. Phys. Lett. 69, 2801 (1996).
- [24] M. M. Factor, D. G. Fiddyment, and M. R. Taylor, J. Electrochem. Soc. 122, 1566 (1975).
- [25] D. Tromans, G. G. Liu, and F. Weinberg, Corros. Sci. 35, 117 (1993).
- [26] P. Schmuki, J. Fraser, C. M. Vitus, M. J. Graham, and H. Isaacs, J. Electrochem. Soc. 143, 3316 (1996).
- [27] P. Schmuki, D. J. Lockwood, J. W. Fraser, M. J. Graham, and H. S. Isaacs, Mat. Res. Soc. Symp. Proc. 431, 439 (1996).
- [28] M. Hao, H. Uchida, C. Shao, T. Soga, T. Jimbo, and M. Umeno, J. Crystal Growth 179, 6661 (1997).
- [29] D. N. Goryachev and O. M. Sreseli, Semiconductors 31, 1192 (1997).
- [30] P. Schmuki, L. E. Erickson, D. J. Lockwood, J. W. Fraser, G. Champion, and H. J. Labbe, Appl. Phys. Lett. 72, 1 (1998).
- [31] P. Schmuki, L. E. Erickson, and D. J. Lockwood, J. Electrochem. Soc. 146, 735 (1999).
- [32] P. Schmuki, L. E. Erickson, and D. J. Lockwood, Phys. Rev. Lett. 80, 4060 (1998).
- [33] H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107, 472 (1960).
- [34] S. Adachi and H. Kawaguchi, J. Electrochem. Soc. 128, 1342 (1981).
- [35] S. das Neves and M. A. de Paoli, J. Electrochem. Soc. 140, 2599 (1993).
- [36] P. A. Kohl, C. Wolowodiuk, and F. W. Ostermayer Jr., J. Electrochem. Soc. 130, 2288 (1983).
- [37] N. G. Ferreira, D. Soltz, F. Decker, and L. Cescato, J. Electrochem. Soc. 142, 1348 (1995).
- [38] E. Kikuno, M. Amitti, T. Takizawa, and S. Arai, Jpn. J. Appl. Phys. 34, 177 (1995).
- [39] T. Takizawa, S. Arai, and M. Nakahara, Jpn. J. Appl. Phys. 33, 2643 (1994).
- [40] A. Hammamatsu, C. Kaneshiro, H. Fujikura, and H. Hasegawa, J. Electroanal. Chem. 473, 223 (1999).
- [41] P. Schmuki, L. Santinacci, T. Djenizian, and D. J. Lockwood, phys. stat. sol. (a) 182, 51 (2000).
- [42] S. M. Sze, Physics of Semiconductor Devices, (John Wiley & Sons, New York, 1981).
- [43] U. G. Akano, I. V. Mitchell, F. R. Shepherd, and C. J. Miner, J. Vac. Sci. Technol. A Vac. Surf., and Films 10, 996 (1992).
- [44] B. Molnar, T. A. Kennedy, E. R. Glaser, and H. B. Dietrich, J. Appl. Phys. 74, 3091 (1993).