Factors Affecting Substrate Heating with Printed Thermites
Corresponding Author
Matthew H. Ervin
- [email protected]
- | Fax: (+011-1-301-394-1559
M/S: FCDD-RLS-EM, US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1138
Search for more papers by this authorCorresponding Author
Matthew H. Ervin
- [email protected]
- | Fax: (+011-1-301-394-1559
M/S: FCDD-RLS-EM, US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1138
Search for more papers by this authorAbstract
Various nano-aluminum thermites were printed and burned on substrates. The reactions were recorded using high-speed and infra-red videography in order to investigate the factors affecting the resulting substrate heating. A large number of factors are found to affect the achieved substrate temperature. The thermite's exothermic energy release, gas generation, and burn rate are significant factors, as are the substrate's mass and thermal conductivity. Full-thickness heating to 360 °C is demonstrated for a standard glass microscope slide. This work will hopefully inspire new applications in actuators or on-chip thermal processing utilizing the high energy density of printed thermites.
Open Research
Data Availability Statement
Author elects to not share data.
References
- 1C. Rossi, D. Esteve, Micropyrotechnics, a New Technology for Making Energetic Microsystems: Review and Prospective, Sens. Actuators A 2005, 120, 297–310.
- 2C. Rossi, K. Zhang, D. Esteve, P. Alphonse, P. Tailhades, C. Vahlas, Nanoenergetic Materials for MEMS: A Review, J. MEMS 2007, 16, 919–931.
- 3C. B. Ru, F. Wang, J. B. Xu, J. Dai, Y. Shen, Y. H. Ye, P. Zhu, R. Q. Shen, Superior Performance of a MEMS-Based Solid Propellant Microthruster (SPM) array with Nanothermites, Microsyst. Technol. 2017, 23, 3161–3174.
- 4C. S. Staley, K. E. Raymond, R. Thiruvengadathan, S. Apperson, K. Gangopadhyay, S. M. Swaszek, R. J. Taylor, S. Gangopadhyay, Fast-Impulse Nanothermite Solid-Propellant Miniaturized Thrusters, J. Propul. Power 2013, 29, 1400–1409.
- 5W. A. Churaman, C. J. Morris, R. Ramachandran, S. Bergbreiter, The Effect of Porosity on Energetic Porous Silicon Solid Propellant Micro-Propulsion, J. Micromech. Microeng. 2015, 25, 115022.
- 6J. Y. Ahn, S. B. Kim, J. H. Kim, N. S. Jang, D. H. Kim, H. W. Lee, J. M. Kim, S. H. Kim, A Micro-Chip Initiator with Controlled Combustion Reactivity Realized by Integrating Al/CuO Nanothermite Composites on a Micro-Hotplate Platform, J. Micromech. Microeng. 2016, 26, 015002.
- 7L. Glavier, A. Nicollet, F. Jouot, B. Martin, J. Barberon, L. Renaud, C. Rossi, Nanothermite/RDX-Based Miniature Device for Impact Ignition of High Explosives, Propellants Explos. Pyrotech. 2017, 42, 307–316.
- 8H. Pezous, C. Rossi, M. Sanchez, F. Mathiew, X. Dollat, S. Charlot, L. Salvagnac, V. Conedera, Integration of a MEMS Based Safe Arm and Fire Device, Sens. Actuators A 2010, 159, 157–167.
- 9P. Pennarun, C. Rossi, D. Esteve, D. Bourrier, Design Fabrication and Characterization of a MEMS Safe Pyrotechnical Igniter Integrating Arming, Disarming and Sterilization Functions, J. Micromech. Microeng. 2006, 16, 92–100.
- 10I. T. Walters, L. J. Groven, Environmentally Friendly Boron-Based Pyrotechnic Delays: An Additive Manufacturing Approach, ACS Sustainable Chem. Eng. 2019, 7, 4360–4367.
- 11T. M. Bell, D. M. Williamson, S. M. Walley, C. G. Morgan, C. L. Kelly, L. Batchelor, An Assessment of Printing Methods for Producing Two-Dimensional Lead-Free Functional Pyrotechnic Delay-Lines for Mining Applications, Propellants Explos. Pyrotech. 2020, 45, 53–76.
- 12M. Korampally, S. J. Apperson, C. S. Staley, J. A. Castorena, R. Thiruvengadathan, K. Gangopadhyay, R. R. Mohan, A. Ghosh, L. Polo-Parada, S. Gangopadhyay, Transient Pressure Mediated Intranuclear Delivery of FITC-Dextran into Chicken Cardiomyocytes by MEMS-Based Nanothermite Reaction Actuator, Sens. Actuators B 2012, 171, 1292–1296.
- 13D. A. de Koninck, F. Molina-Lopex, D. Briand, N. F. de Rooij, Foil-Level Inkjet-Printed PyroMEMS Balloon Actuators: Fabrication, Modeling, and Validations, J. MEMS 2014, 23, 1417–1427.
10.1109/JMEMS.2014.2314702 Google Scholar
- 14G. A. Rodriguez, S. Suhard, C. Rossi, D. Esteve, P. Fau, S. Sabo-Etienne, A. F. Mingotaud, M. Mauzac, B. Chaudret, A Microactuator Based on the Decomposition of an Energetic Material for Disposable Lab-on-Chip Applications: Fabrication and Test, J. Micromech. Microeng. 2009, 19, 015006.
- 15M. De Volder, D. Reynaerts, Pneumatic and Hydraulic Microactuators: a Review, J. Micromech. Microeng. 2010, 20, 043001.
- 16E. Song, Thermite Destructive Device, US Patent 5,698,812, US Army, Washington, D. C., USA, 1997.
- 17C. A. Crane, E. S. Collins, M. L. Pantoya, B. L. Weeks, Nanoscale Investigation of Surfaces Exposed to a Thermite Spray, Appl. Therm. Eng. 2011, 31, 1286–1292.
- 18M. H. Ervin, S. S. Bedair, C. R. Knick, H. Tsang, B. Isaacson, N. W. Piekiel, Evaporation Driven Assembly of On-Chip Thermite Devices, J. MEMS 2017, 26, 1408–1416.
- 19S. Ogden, L. Klintber, G. Thornell, K. Hjort, R. Boden, Review on Miniaturized Paraffin Phase Change Actuators, Valves, and Pumps, Microfluid. Nanofluid. 2014, 17, 53–71.
- 20E. Wilhelm, C. Richter, B. E. Rapp, Phase Change Materials in Microactuators: Basics, Applications and Perspectives, Sens. Actuators A 2018, 271, 303–347.
- 21K. T. Sullivan, C. Zhu, D. J. Tanaka, J. D. Kuntz, E. B. Douss, A. E. Gash, Electrophoretic Deposition of Thermites onto Micro-Engineered Electrodes Prepared by Direct-Ink Writing, J. Phys. Chem. B 2013, 117, 1686–1693.
- 22C. Rossi, Engineering of Al/CuO Reactive Multilayer Thin Films for Tunable Initiation and Actuation, Propellants Explos. Pyrotech. 2019, 44, 94–108.
- 23L. J. Groven, M. J. Mezger, The Path Toward Additive Manufacturing of Munitions, in Energetic Materials: Advanced Processing Technologies for Next-Generation Materials (Eds.: M. J.Mezger, K. J. Tindle, M. Pantoya, L. J. Groven, D. Kalyon), CRC Press: Taylor & Francis Ltd., Boca Raton, FL 2018, p. 115.
- 24A. K. Murray, T. Isik, V. Ortalan, I. E. Grunduz, S. F. Son, G. T.-C. Chiu, J. F. Rhoads, Two-Component Additive Manufacturing of Nanothermite Structures via Reactive Inkjet Printing, J. Appl. Phys. 2017, 122, 184901.
- 25A. S. Tappan, J. Cesarano, J. N. Stuecker, Nanocomposite Thermite Ink, US Patent 8,048,242, Sandia Corp., Albuquerque, NM, USA, 2011.
- 26T. J. Fleck, A. K. Murray, I. E. Gunduz, S. F. Son, G. T.-C. Chiu, J. F. Rhoads, Additive Manufacturing of Multifunctional Reactive Materials, Addit. Manuf. 2017, 17, 176–182.
- 27Y. Mao, L. Zhong, X. Zhou, D. Zheng, X. Zhang, T. Duan, F. Nie, B. Gao, D. Wang, 3D Printing of Micro-Architected Al/CuO-Based Nanothermite for Enhanced Combustion Performance, Adv. Eng. Mater. 2019, 21, 1900825.
- 28H. Wang, J. Shen, D. J. Kline, N. Eckman, N. R. Agrawal, T. Wu, P. Wang, M. R. Zachariah, Direct Writing of a 90 wt.% Particle Loading Nanothermite, Adv. Mater. 2019, 31, 1806575.
- 29J. Shen, H. Wang, D. J. Kline, Y. Yang, X. Wang, M. Rehwoldt, T. Wu, S. Holdren, M. R. Zachariah, Combustion of 3D Printed 90 wt% Loading Reinforced Nanothermite, Comb. Flame 2020, 215, 86–92.
- 30K. T. Sullivan, C. Zhu, E. B. Duoss, A. E. Gash, D. B. Kolesky, J. D. Kuntz, J. D. Kuntz, J. A. Lewis, C. M. Spadaccini, Controlling Material Reactivity Using Architecture, Adv. Mater. 2016, 28, 1934–1939.
- 31A. M. Golobic, M. D. Durban, S. E. Fisher, M. D. Grapes, J. M. Ortega, C. M. Spadaccini, E. B. Duoss, A. E. Gash, K. T. Sullivan, Active Mixing of Reactive Materials for 3D Printing, Adv. Eng. Mater. 2019, 21, 1900147.
- 32G. E. Ruz-Naglo, L. J. Groven, 3-D Printing and Development of Fluoropolymer Based Reactive Inks, Adv. Eng. Mater. 2018, 20, 1700390.
- 33K. E. Neely, K. C. Galloway, A. M. Strauss, Additively Manufactured Reactive Material Architectures as a Programmable Heat Source, 3D Printing Add. Manuf. 2019, 6, 210–216.
10.1089/3dp.2018.0077 Google Scholar
- 34M. S. McClain, I. E. Gunduz, S. F. Son, Additive Manufacturing of Ammonium Perchlorate Composite Propellant with High Solids Loadings, Proc. Combust. Inst. 2019, 37, 3135–3142.
- 35N. V. Muravyev, K. A. Monogarov, U. Schaller, I. V. Fomenkov, A. N. Pivkina, Progress in Additive Manufacturing of Energetic Materials: Creating the Reactive Microstructures with High Potential of Applications, Propellants Explos. Pyrotech. 2019, 44, 941–969.
- 36C. Yu, W. Zhang, R. Shen, X. Xu, J. Cheng, J. Ye, Z. Qin, Y. Chao, 3D Ordered Macroporous NiO/Al Nanothermite Film with Significantly Improved Higher Heat output, Lower Ignition Temperature and Less Gas Production, Mater. Des. 2016, 110, 304–310.
- 37C. A. Crouse, C. J. Pierce, J. E. Spowart, Synthesis and Reactivity of Aluminized Fluorinated Acrylic (AlFA) Nanocomposites, Comb. Flame 2012, 159, 3199–3207.
- 38M. W. Beckstead, Correlating Aluminum Burning Times, Combust. Explos. Shock Waves 2005, 41, 533–546.
- 39X. Zhou, Y. Zhu, X. Ke, K. Zhangin, Exploring the Solid-State Interfacial Reaction of Al/Fe2O3 Nanothermites by Thermal Analysis, J. Mater. Sci. 2019, 54, 4115–4123.
- 40I. Glassman, R. A. Yetter, Combustion, Academic Press, Burlington MA, 2008, p. 512.
- 41C. A. Crane, M. Pantoya, J. Dunn, Infrared Measurement of Energy Transfer from Energetic Materials to Steel Substrates, Int. J. Therm. Sci. 2010, 49, 1877–1885.
- 42T. Bazyn, H. Drier, N. Glumac, Combustion of Nanoaluminum at Elevated Pressure and Temperature behind Reflected Shock Waves, Comb. Flame 2006, 145, 703–713.
- 43Y. Huang, G. A. Risha, V. Yang, R. A. Yetter, Combustion of Bimodal Nano/Micron-Sized Aluminum Particle Dust in Air, Proc. Combust. Inst. 2007, 31, 2001–2009.
- 44A. S. Mukasyan, A. S. Rogachev, Discrete Reaction Waves: Gasless Combustion of Solid Powder Mixtures, Prog. Energy Combust. Sci. 2008, 34, 377–416.
- 45H. Wang, D. J. Kline, M. R. Zachariah, In-Operando High-speed Microscopy and Thermometry of Reaction Propagation and Sintering in a Nanocomposite, Nat. Commun. 2019, 10, 3032.
- 46R. Ramachandran, V. S. Vuppuluri, T. J. Fleck, J. F. Rhoads, I. E. Gunduz, S. F. Son, Influence of Stoichiometry on the Thrust and Heat Deposition of On-Chip Nanothermites, Propellants Explos. Pyrotech. 2018, 43, 258–266.
- 47K. T. Sullivan, O. Cervantes, J. M. Densmore, J. D. Kuntz, A. E. Gash, J. D. Molitoris, Quantifying Dynamic Processes in Reactive Materials: An Extended Burn Tube Test, Propellants Explos. Pyrotech. 2015, 40, 394–401.
- 48E. P. Nixon, M. L. Pantoya, D. J. Prentice, E. D. Steffler, M. A. Daniels, S. P. D'Arche, A Diagnostic for Quantifying Heat Flux from a Thermite Spray, Meas. Sci. Technol. 2010, 21, 025202.
- 49G. C. Egan, M. R. Zachariah, Commentary on the Heat Transfer Mechanisms Controlling Propagation in Nanothermites, Comb. Flame 2015, 162, 2959–2961.
- 50K. A. Monogarov, D. B. Meerov, Y. V. Frolov, A. N. Pivkina, Combustion Features of Nanothermites in Pyrotechnic Heaters, Russ. J. Phys. Chem. B 2019, 13, 610–614.
- 51S. F. Son, B. W. Asay, T. J. Foley, R. A. Yetter, M. H. Wu, G. A. Risha, Combustion of Nanoscale Al/MoO3 Thermite in Microchannels, J. Propul. Power 2007, 23, 715–721.
- 52E. S. Collins, M. L. Pantoya, M. A. Daniels, D. J. Prentice, E. D. Steffler, S. P. D'Arche, Heat Flux Analysis of Reacting Thermite Spray Impingent on a Substrate, Energy Fuels 2012, 26, 1621–1628.