Dielectric barrier discharge plasma catalysis for diesel particulate matter oxidation: Optimization and synergistic differences in transition metal catalysts
Baoyong Ren
School of Safety Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorWei Wang
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorZuliang Wu
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou, People's Republic of China
Search for more papers by this authorJing Li
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou, People's Republic of China
Search for more papers by this authorErhao Gao
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorJiali Zhu
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorCorresponding Author
Shuiliang Yao
School of Safety Science and Engineering, Changzhou University, Changzhou, People's Republic of China
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou, People's Republic of China
Correspondence Shuiliang Yao, School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China.
Email: [email protected]
Search for more papers by this authorBaoyong Ren
School of Safety Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorWei Wang
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorZuliang Wu
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou, People's Republic of China
Search for more papers by this authorJing Li
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou, People's Republic of China
Search for more papers by this authorErhao Gao
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorJiali Zhu
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Search for more papers by this authorCorresponding Author
Shuiliang Yao
School of Safety Science and Engineering, Changzhou University, Changzhou, People's Republic of China
School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou, People's Republic of China
Correspondence Shuiliang Yao, School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China.
Email: [email protected]
Search for more papers by this authorAbstract
Nonthermal plasma (NTP) enhanced catalytic oxidation of diesel particulate matter (DPM) is promising for applications. The synergistic effects of transition metal oxides (MOx, M = Mn, Cu, Ce, Fe, Co, Ti) and dielectric barrier discharge (DBD) plasma on DPM oxidation were investigated, and Fe2O3 showed the best synergistic effect. Cobalt-doped iron oxide (Co–FeOx) displaying a spinel structure showed the best performance among M–FeOx (M = Co, Ce, Cu, Zn, Mn). The main intermediate product generated during the catalytic oxidation of DPM is monodentate carbonate. Under DBD plasma, a strong oxidizing intermediate ferrate (FeO42−) mainly produced at 100–200°C can promote the low-temperature oxidation of DPM.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ppap202400073-sup-0001-Supporting_Information-revised-clean.docx5.6 MB | Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. Luo, H. Zhang, Z. Liu, Z. Zhang, Y. Pan, X. Liang, S. Wu, H. Xu, S. Xu, C. Jiang, Environ. Sci. Pollut. Res. 2023, 30, 86556.
- 2R. Prasad, S. V. Singh, J. Environ. Chem. Eng. 2020, 8, 103945.
- 3Z. Zhang, J. Tian, J. Li, C. Cao, S. Wang, J. Lv, W. Zheng, D. Tan, Fuel Process. Technol. 2022, 233, 107317.
- 4G. C. Dhal, S. Dey, D. Mohan, R. Prasad, Catal. Rev. 2018, 60, 437.
- 5C. Zhang, S. Gao, D. Yu, S. Zhou, L. Wang, X. Yu, Z. Zhao, J. Rare Earths 2024, 42, 1187.
- 6Y. Ma, H. Guo, J. Xiong, L. Xu, Y. Wei, ChemCatChem 2024, 16, e202301317.
- 7A. A. Khaskheli, L. Xu, D. Liu, Energy Fuels 2022, 36, 7362.
- 8H. Chen, T. Li, Z. Xu, W. Wang, H. Wang, Mater. Res. Express 2022, 9, 015502.
- 9D. Jampaiah, V. K. Velisoju, P. Venkataswamy, V. E. Coyle, A. Nafady, B. M. Reddy, S. K. Bhargava, ACS Appl. Mater. Interfaces 2017, 9, 32652.
- 10M. Wang, Y. Zhang, Y. Yu, W. Shan, H. He, Environ. Sci. Technol. 2021, 55, 240.
- 11J. Ko, J. Son, C.-L. Myung, S. Park, Fuel 2018, 233, 620.
- 12X. Mei, X. Zhu, Y. Zhang, Z. Zhang, Z. Zhong, Y. Xin, J. Zhang, Nat. Catal. 2021, 4, 1002.
- 13H. T. Quoc An, T. Pham Huu, T. Le Van, J. M. Cormier, A. Khacef, Catal. Today 2011, 176, 474.
- 14F. Thevenet, L. Sivachandiran, O. Guaitella, C. Barakat, A. Rousseau, J. Phys. D: Appl. Phys. 2014, 47, 224011.
- 15M. Russo, G. Iervolino, V. Vaiano, V. Palma, Catalysts 2020, 10, 1438.
- 16H. Guo, Y. Wang, L. Liao, Z. Li, S. Pan, C. Puyang, Y. Su, Y. Zhang, T. Wang, J. Ren, Chem. Eng. J. 2022, 436, 135239.
- 17J. Li, C. Ma, S. Zhu, F. Yu, B. Dai, D. Yang, Nanomaterials 2019, 9, 1428.
- 18K. Ollegott, P. Wirth, C. Oberste-Beulmann, P. Awakowicz, M. Muhler, Chem. Ing. Tech. 2020, 92, 1542.
- 19L. Lisi, G. Landi, V. Di Sarli, Catalysts 2020, 10, 1307.
- 20J. Yang, S. Hu, Y. Fang, S. Hoang, L. Li, W. Yang, Z. Liang, J. Wu, J. Hu, W. Xiao, C. Pan, Z. Luo, J. Ding, L. Zhang, Y. Guo, ACS Catal. 2019, 9, 9751.
- 21X. Mao, S. Liu, W. Liu, X. Wu, S. Liu, Appl. Catal., B 2022, 310, 121331.
- 22Y. Shi, Y. Yang, Y. He, Y. Cai, J. Xie, X. Chen, Z. Ding, Fuel 2024, 359, 130312.
- 23E. C. Neyts, K. Ostrikov, M. K. Sunkara, A. Bogaerts, Chem. Rev. 2015, 115, 13408.
- 24H. Ranji-Burachaloo, S. Masoomi-Godarzi, A. A. Khodadadi, Y. Mortazavi, Appl. Catal., B 2016, 182, 74.
- 25B. Ren, S. Fang, T. Zhang, Y. Sun, E. Gao, J. Li, Z. Wu, J. Zhu, W. Wang, S. Yao, Plasma Sci. Technol. 2024, 26, 055503.
- 26S. Yao, X. Shen, X. Zhang, J. Han, Z. Wu, X. Tang, H. Lu, B. Jiang, Chem. Eng. J. 2017, 327, 343.
- 27S. Chen, H. Wang, F. Dong, J. Hazard. Mater. 2022, 427, 128150.
- 28Z. Zhang, Z. Sui, C. Song, W. Lu, X. Fan, H. Li, P. Wang, Environ. Technol. Innovation. 2023, 29, 103007.
- 29D. Kostyukova, Y. H. Chung, J. Nanomater. 2016, 2016, 4982675.
- 30Y. Zheng, K. Fu, Z. Yu, Y. Su, R. Han, Q. Liu, J. Mater. Chem. A 2022, 10, 14171.
- 31F. Che, J. T. Gray, S. Ha, N. Kruse, S. L. Scott, J.-S. McEwen, ACS Catal. 2018, 8, 5153.
- 32Y. Zhang, J. Qian, P. Wang, Y. He, B. Lu, S. Tang, K. Xu, Sep. Purif. Technol. 2023, 309, 123075.
- 33Q. Zhao, Y. Ge, K. Fu, N. Ji, C. Song, Q. Liu, Chemosphere 2018, 204, 257.
- 34J. Deng, Y.-J. Chen, Y.-A. Lu, X.-Y. Ma, S.-F. Feng, N. Gao, J. Li, Environ. Sci. Pollut. Res. 2017, 24, 14396.
- 35R. S. Yadav, J. Havlica, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer, I. Kuřitka, Z. Kozakova, J. Supercond. Novel Magn. 2015, 28, 1851.
- 36Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Appl. Surf. Sci. 2008, 254, 6972.
- 37Y. Kumar, A. Sharma, M. A. Ahmed, S. S. Mali, C. K. Hong, P. M. Shirage, New J. Chem. 2018, 42, 15793.
- 38W. P. Wang, H. Yang, T. Xian, J. L. Jiang, Mater. Trans. 2012, 53, 1586.
- 39J.-L. Ortiz-Quiñonez, U. Pal, M. S. Villanueva, ACS Omega 2018, 3, 14986.
- 40L. Eduardo Caldeira, C. Stockey Erhardt, F. Ravanello Mariosi, J. Venturini, R. Young Sun Zampiva, O. Rubem Klegues Montedo, S. Arcaro, C. Pérez Bergmann, S. Roca Bragança, J. Magn. Magn. Mater. 2022, 550, 169128.
- 41S. Choudhary, A. Bisht, S. Mohapatra, SN Appl. Sci. 2019, 1, 1613.
- 42V. Bartůněk, D. Sedmidubský, Š. Huber, M. Švecová, P. Ulbrich, O. Jankovský, Materials 2018, 11, 1241.
- 43S. Yanagisawa, K. Yotsuya, Y. Hashiwaki, M. Horitani, H. Sugimoto, Y. Shiro, E. H. Appelman, T. Ogura, Chem. Lett. 2010, 39, 36.
- 44H.-C. Huang, C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, J.-M. Ting, H. Teng, J. Phys. Chem. C 2011, 115, 20689.
- 45S. Licht, V. Naschitz, L. Halperin, N. Halperin, L. Lin, J. Chen, S. Ghosh, B. Liu, J. Power Sources 2001, 101, 167.
- 46Z. Luo, M. Strouse, J.-Q. Jiang, V. K. Sharma, J. Environ. Sci. Health, Part A 2011, 46, 453.
- 47B. Joshi, A. M. E. Khalil, T. A. Tabish, F. A. Memon, H. Chang, S. Zhang, ACS Omega 2023, 8, 29674.