A Comprehensive Chemical Model for the Splitting of CO2 in Non-Equilibrium Plasmas
Corresponding Author
Peter Koelman
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorStijn Heijkers
Department Chemistry, University of Antwerp, PLASMANT, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerpen-Wilrijk, Belgium
Search for more papers by this authorSamaneh Tadayon Mousavi
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorWouter Graef
Plasma Matters B.V., Den Dolech 2 Flux 3.112, 5612 AZ Eindhoven, The Netherlands
Search for more papers by this authorDiana Mihailova
Plasma Matters B.V., Den Dolech 2 Flux 3.112, 5612 AZ Eindhoven, The Netherlands
Search for more papers by this authorTomas Kozak
Department of Physics and NTIS – European Centre of Excellence, University of West Bohemia, Univerzitny 8, 30614 Plzen, Czech Republic
Search for more papers by this authorAnnemie Bogaerts
Department Chemistry, University of Antwerp, PLASMANT, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerpen-Wilrijk, Belgium
Search for more papers by this authorJan van Dijk
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorCorresponding Author
Peter Koelman
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorStijn Heijkers
Department Chemistry, University of Antwerp, PLASMANT, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerpen-Wilrijk, Belgium
Search for more papers by this authorSamaneh Tadayon Mousavi
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorWouter Graef
Plasma Matters B.V., Den Dolech 2 Flux 3.112, 5612 AZ Eindhoven, The Netherlands
Search for more papers by this authorDiana Mihailova
Plasma Matters B.V., Den Dolech 2 Flux 3.112, 5612 AZ Eindhoven, The Netherlands
Search for more papers by this authorTomas Kozak
Department of Physics and NTIS – European Centre of Excellence, University of West Bohemia, Univerzitny 8, 30614 Plzen, Czech Republic
Search for more papers by this authorAnnemie Bogaerts
Department Chemistry, University of Antwerp, PLASMANT, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerpen-Wilrijk, Belgium
Search for more papers by this authorJan van Dijk
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Search for more papers by this authorAbstract
An extensive CO2 plasma model is presented that is relevant for the production of “solar fuels.” It is based on reaction rate coefficients from rigorously reviewed literature, and is augmented with reaction rate coefficients that are obtained from scaling laws. The input data set, which is suitable for usage with the plasma simulation software Plasimo (https://plasimo.phys.tue.nl/), is available via the Plasimo and publisher's websites.1 The correctness of this model implementation has been established by independent ZDPlasKin implementation (http://www.zdplaskin.laplace.univ-tlse.fr/), to verify that the results agree. Results of these “global models” are presented for a DBD plasma reactor.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ppap201600155-sup-0001-SuppData-S1.txt1 KB | Supporting Readme |
ppap201600155-sup-0002-SuppData-S1.tgz5.4 MB | Supporting Koelman2016 S1. |
ppap201600155-sup-0003-SuppData-S2.zip5.9 MB | Supporting Koelman2016 S2. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
V. D. Rusanov,
A. A. Fridman,
G. V. Sholin,
Soviet Phys. Usp.
1981,
24, 447.
10.1070/PU1981v024n06ABEH004884 Google Scholar
- 2
A. Fridman,
Plasma Chemistry.
Cambridge University Press,
Cambridge, New York
2008.
10.1017/CBO9780511546075 Google Scholar
- 3 M. L. Robeson, J. Membr. Sci. 2008, 320, 390.
- 4 T. Visser, G. H. Koops, M. Wessling, J. Membr. Sci. 2005, 252, 265.
- 5 R. Aerts, T. Martens, A. Bogaerts, J. Phys. Chem. C 2012, 118, 28330.
- 6 T. Kozak, A. Bogaerts, Plasma Sources Sci. Technol. 2014, 23, 045004.
- 7
M. Capitelli,
C. M. Ferreira,
B. F. Gordiets,
A. I. Osipov,
Plasma Kinetics in Atmospheric Gases.
Springer Series on Atomic, Optical, and Plasma Physics,
Springer Berlin Heidelberg
2000.
10.1007/978-3-662-04158-1 Google Scholar
- 8 A. Cenian, A. Chernukho, V. Borodin, G. liwiski, Contrib. Plasm. Phys. 1994, 34, 25.
- 9 T. Kozak, A. Bogaerts, Plasma Sources Sci. Technol. 2015, 24, 015024.
- 10 R. Dorai, Modelling of Atmospheric Pressure Plasma Processing of Gasses and Surfaces. PhD Thesis, University of Illinois at Urban-Champaign, 2002.
- 11 K. Peerenboom, A. Parente, T. Kozak, A. Bogaerts, G. Degrez, Plasma Sources Sci. Technol. 2015, 24, 025004.
- 12 S. Heijkers, R. Snoeckx, T. Kozk, T. Silva, T. Godfroid, N. Britun, R. Snyders, A. Bogaerts, J. Phys. Chem. C 2015, 119, 12815.
- 13 L. D. Pietanza, G. Colonna, G. DAmmando, A. Laricchiuta, M. Capitelli, Plasma Sources Sci. Technol. 2015, 24, 042002.
- 14 W. A. A. D. Graef, Zero- Dimensional Models for Plasma Chemistry. PhD thesis, Eindhoven University of Technology, The Netherlands, 2012.
- 15 J. Dijk, K. Peerenboom, M. Jimenez, D. Mihailova, J. van der Mullen, J. Phys. D: Appl. Phys. 2009, 42, 194012.
- 16 S. Pancheshnyi, B. Eismann, G. J. M. Hagelaar, L. C. Pitchford, “ZDPLASKIN: A New Tool for Plasmachemical Simulations”, The Eleventh International Symposium on High Pressure, Low Temperature Plasma Chemistry (HAKONE XI), September 2008, Oleron Island, France.
- 17 M. Mitchner, C. H. Kruger, Partially Ionized Gases. Wiley Series in Plasma Physics, Wiley 1973.
- 18 G. J. M. Hagelaar, L. C. Pitchford, Plasma Sources Sci. Technol. 2005, 14, 722.
- 19 A. C. Hindmarsh, Proc. 10th IMACS Congr. on System Simulation and Scientific Computation 1982, 1, 427432.
- 20 P. N. Brown, A. C. Hindmarsh, Appl. Math. Comput. 1989, 31, 40.
- 21
M. A. Lieberman,
A. J. Lichtenberg,
Principles of Plasma Discharges and Materials Processing.
Wiley,
2005.
10.1002/0471724254 Google Scholar
- 22 R. Aerts, T. Martens, A. Bogaerts, J. Phys. Chem. C 2014, 118, 28330.
- 23
G. D. Billing, “Vibration-Vibration and Vibration-Translation Energy Transfer, Including Multiquantum Transitions in Atom-Diatom and Diatom-Diatom Collisions”, in
Nonequilibrium Vibrational Kinetics M. Capitelli, Ed.,
Springer,
Berlin Heidelberg
1986, p. 85.
10.1007/978-3-642-48615-9_4 Google Scholar
- 24 L. D. Pietanza, G. Colonna, G. D'Ammando, A. Laricchiuta, M. Capitelli, Phys. Plasmas 2016, 23, 013515-1.
- 25
M. Capitelli,
C. M. Ferreira,
B. F. Gordiets,
A. I. Osipov,
Plasma Kinetics in Atmospheric Gases.
Springer Series on Atomic, Optical, and Plasma Physics,
Springer Berlin Heidelberg
2000.
10.1007/978-3-662-04158-1 Google Scholar
- 26 P. J. Linstrom, W. G. Mallard, . NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899, June 2005.
- 27 I. Suzuki, J. Mol. Spectrosc. 1968, 25, 479.
- 28 G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic molecules. Prentice-Hall physics series, Van Nostrand 1950.
- 29 R. N. Schwartz, Z. I. Slawsky, K. F. Herzfeld, J. Chem. Phys. 1952, 20, 1591.
- 30 J. J. Lowke, A. V. Phelps, B. W. Irwin, J Appl. Phys. 1973, 44, 4664.
- 31 T. G Beuthe, J.-S. Chang, Jpn. J. Appl. Phys. 1997, 36, 4997.
- 32 J. E. Land, J. Appl. Phys 1978, 49, 5716.
- 33 R. K. Janev, J. G. Wang, I. Murakami, T. Kato, 2001.
- 34 H. Hokazono, H. Fujimoto, J. Appl. Phys. 1987, 62, 1585.
- 35 R. E. Beverly, Opt. Quant. Electron. 1982, 14, 501.
- 36 W. Liu, G. A. Victor, Astrophys. J. 1994, 435, 909.
- 37 H. Hokazono, M. Obara, K. Midorikawa, H. Tashiro, J. Appl. Phys. 1991, 69, 6850.
- 38 A. Cenian, A. Chernukho, V. Borodin, Contrib. Plasm. Phys. 1995, 35, 273.
- 39 L. E. Khvorostovskaya, V. A. Yankovsky, Contrib. Plasm. Phys. 1991, 31, 71.
- 40 I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, V. P. Silakov, Plasma Sources Sci. Technol. 1992, 1, 207.
- 41 A. V. Eremin, V. S. Ziborov, V. V. Shumova, D. Voiki, P. Roth, Kinet. Catal. 1997, 38, 1.
- 42 J. A. Manion, R. E. Huie, R. D. Levin, D. R. Burgess, Jr., V. L. Orkin, W. Tsang, W. S. McGivern, J. W. Hudgens, V. D. Knyazev, D. B. Atkinson, E. Chai, A. M. Tereza, C.-Y. Lin, T. C. Allison, W. G. Mallard, F. Westley, J. T. Herron, R. F. Hampson, D. H. Frizzell, editors. NIST Standard Reference Database 17, Version 7.0 (Web Version). National Institute of Standards and Technology, Gaithersburg MD, 20899, 2015.
- 43 D. Husain, L. J. Kirsch, Trans. Faraday Soc. 1971, 17, 1713.
- 44 W. L. Shackleford, F. N. Mastrup, W. C. Kreye, J. Chem. Phys. 1972, 57, 3933.
- 45 R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi, J. Troe, J. Phys. Chem. Ref. Data 1997, 26, 1329.
- 46 H. Hippler, R. Rahn, J. Troe, J. Chem.Phys. 1990, 93, 6560.
- 47 W. Tsang, R. F. Hampson, J. Phys. Chem. Ref. Data 1986, 15, 1087.
- 48 S. Hadj-Ziane, B. Held, P. Pignolet, R. Peyrous, C. Coste, J. Phys. D: Appl. Phys. 1992, 25, 677.
- 49 D. L. Albritton, At. Data. Nucl. Data Tables 1978, 22, 1.
- 50 H. Shields, A. L. S. Smith, B. Norris, J. Phys. D: Appl. Phys. 1976, 9, 1587.
- 51 J. T. Gudmundsson, E. G. Thorsteinsson, Plasma Sources Sci. Technol. 2007, 16, 399.
- 52 A. A. Ionin, I. V. Kochetov, A. P. Napartovich, N. N. Yuryshev, J. Phys. D: Appl. Phys. 2007, 40, R25.
- 53 B. Eliasson, M. Hirth, U. Kogelschatz, J. Phys. D: Appl. Phys. 1987, 20, 1421.
- 54 J. S Chang, S. Masuda, Pure and Appl. Chem. 1988, 60, 645.
- 55 J. A. Blauer, G. R. Nickerson, A Survey of Vibrational Relaxation Rate Data for Processes Important to CO2-N2-H2O Infrared Plume Radiation, NTIS US Department of Commerce, Springfield, VA 1973.
- 56 P. Mohr, B. Taylor, D. Newell, J. Phys. Chem. Ref. Data. 2008, 37, 1187.
- 57
J. A. Bittencourt,
Fundamentals of Plasma Physics.
Springer,
New York
2004.
10.1007/978-1-4757-4030-1 Google Scholar
- 58 Y. Itikawa, A. Ichimura, J. Phys. Chem. Ref. Data 1990, 19, 637.
- 59 O. J. Orient, S. K. Srivastava, J. Phys. B: At. Mol. Phys. 1987, 20, 3923.
- 60 P. C. Cosby, J. Chem. Phys. 1993, 98, 7804.
- 61 B. G. Lindsay, M. A. Mangan, R. F. Stebbings, J. Phys.B At. Mol. Opt. Phys. 2000, 33, 3225.
- 62 A. V. Phelps. Tabulations of collision cross sections and calculated transport and reaction coefficients for electron collisions with o2. (28):1–12, 09/01/1985 1985. JILA Pub. 3215.
- 63 E. Krishnakumar, S. K. Srivastava, Int. J. Mass Spectrom. Ion Processes 1992, 113, 1.
- 64 L. L. Alves, JPCS 2014, 565, 012007.
- 65 J. Woodall, M. Agndez, A. J. Markwick-Kemper, T. J. Millar, Astronom. and Astrophys. 2007, 466, 1197.
- 66 T. G. Kreutz, J. A. O'Neill, G. W. Flynn, J. Phys. Chem. 1987, 91, 5540.