Fabrication of a nanohybrid of conjugated polymer nanoparticles and graphene oxide for biosensing of trypsin
Jaeguk Noh
Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 305-764 Korea
Search for more papers by this authorByung-Jae Chae
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 Korea
Search for more papers by this authorBon-Cheol Ku
Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Jeonbuk, 565-905 Korea
Search for more papers by this authorCorresponding Author
Taek Seung Lee
Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 305-764 Korea
Correspondence to: T. S. Lee (E-mail: [email protected])Search for more papers by this authorJaeguk Noh
Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 305-764 Korea
Search for more papers by this authorByung-Jae Chae
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 Korea
Search for more papers by this authorBon-Cheol Ku
Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Jeonbuk, 565-905 Korea
Search for more papers by this authorCorresponding Author
Taek Seung Lee
Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 305-764 Korea
Correspondence to: T. S. Lee (E-mail: [email protected])Search for more papers by this authorABSTRACT
Conjugated polymers containing triphenylamine group are synthesized via Suzuki coupling polymerization. Fluorescent-conjugated polymer nanoparticles (CPN) are prepared by reprecipitation method using the newly synthesized conjugated polymer. CPN can be encapsulated with polyarginine by electrostatic interaction. The CPN modified with polyarginine exhibit excellent interaction with graphene oxide (GO) which is chemically modified with hydrophilic groups that possesses negative charge, which, in turn, induces the quenching of the fluorescence of CPN upon formation of CPN–GO nanohybrid. Upon exposure to trypsin, the quenched fluorescence is recovered by release of CPN from the nanohybrid, because trypsin cleaves the polyarginine linkage, resulting in weakening of interaction between CPN and GO. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1898–1904
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
pola27215-sup-0001-suppinfo01.docx1.1 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1(a) J. Zhang, Y. Tang, K. Lee, M. Ouyang, Science 2010, 327, 1634–1638; (b) S.-H. Hu, X. Gao, J. Am. Chem. Soc. 2010, 132, 7234–7237; (c) M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, Chem. Rev. 2011, 111, 3736–3827; (d) C. D. M. Donegá, Chem. Soc. Rev. 2011, 40, 1512–1546; (e) Y. Jin, X. Gao, Nat. Nanotechnol. 2009, 4, 571–576; (f) M. R. Buck, J. F. Bondi, R. E. Schaak, Nat. Chem. 2012, 4, 37–44.
- 2(a) K. Pu, K. Li, J. Shi, B. Liu, Chem. Mater. 2009, 21, 3816–3822; (b) L. P. Fernando, P. K. Kandel, J. Yu, J. McNeill, P. C. Ackroyd, K. A. Christensen, Biomacromolecules 2010, 11, 2675–2682; (c) T. Vokatá, J. H. Moon, Macromolecules 2013, 46, 1253–1259; (d) C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, D. T. Chiu, J. Am. Chem. Soc. 2010, 132, 15410–15417; (e) C. Wu, B. Bull, C. Szymanski, K. Christensen, J. McNeill, ACS Nano 2008, 2, 2415–2423; (f) A. Kaeser, A. P. H. Schenning, Adv. Mater. 2010, 22, 2985–2997; (g) J. Pecher, S. Mecking, Chem. Rev. 2010, 110, 6260–6279; (h) P. Howes, M. Green, J. Levitt, K. Suhling, M. Hughes, J. Am. Chem. Soc. 2010, 132, 3989–3996.
- 3(a) Y. Jin, F. Ye, C. Wu, Y.-H. Chan, D. T. Chiu, Chem. Commun. 2012, 48, 3161–3163; (b) Y.-H. Chan, F. Ye, M. E. Gallina, X. Zhang, Y. Jin, I.-C. Wu, D. T. Chiu, J. Am. Chem. Soc. 2012, 134, 7309–7312; (c) J. Geng, J. Liu, J. Liang, H. Shi, B. Liu, Nanoscale 2013, 5, 8593–8601; (d) C. Wu, Y. Jin, T. Schneider, D. R. Burnham, P. B. Smith, D. T. Chiu, Angew. Chem. Int. Ed. 2010, 49, 9436–9440.
- 4(a) D. Li, R. B. Kaner, Science 2008, 320, 1170–1171; (b) D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Nature 2007, 448, 457–460; (c) K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669; (d) M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132–145.
- 5(a) E. Morales-Naváez, A. Merkoçi, Adv. Mater. 2012, 24, 3298–3308; (b) S. Guo, S. Dong, J. Mater. Chem. 2011, 21, 18503–18516; (c) Y. Xu, A. Malkovskiy, Y. Pang, Chem. Commun. 2011, 47, 6662–6664; (d) Y. Lin, Y. Tao, F. Pu, J. Ren, Z. Qu, Adv. Funct. Mater. 2011, 21, 4565–4572; (e) J. Geng, L. Zhou, B. Liu, Chem. Commun. 2013, 49, 4818–4820; (f) X. Qi, H. Li, J. W. Y. Lam, X. Yuan, J. Wei, B. Z. Tang, H. Zhang, Adv. Mater. 2012, 24, 4191–4195.
- 6(a) K. Yamashita, K. Mimori, H. Inoue, Cancer Res. 2003, 63, 6575–6578; (b) M. Hirota, M. Ohmuraya, H. J. Baba, Gastroenterology 2006, 41, 832–836.
- 7(a) H. Yamamoto, S. Iku, Y. Adachi, A. Imsumran, H. Taniguchi, K. Nosho, Y. Min, S. Horiuchi, M. Yoshida, F. Itoh, K. Imai, J. Pathol. 2003, 199, 176–184; (b) G. H. Caughey, Immunol. Rev. 2007, 217, 141–154.
- 8(a) J. V. Olsen, S. E. Ong, M. Mann, Mol. Cell. Proteomics 2004, 3, 608–614; (b) Q. Zhu, R. Zhan, B. Liu, Macromol. Rapid Commun. 2010, 31, 1060–1064; (c) J. H. Wosnick, C. M. Mello, T. M. Swager, J. Am. Chem. Soc. 2005, 127, 3400–3405.
- 9(a) M. Li, X. Zhou, S. Guo, N. Q. Wu, Biosens. Bioelectron. 2013, 43, 69–74; (b) M. Li, Q. Wang, X. Shi, L. A. Hornak, N. Q. Wu, Anal. Chem. 2011, 83, 7061–7065.
- 10(a) J. Balapanuru, J.-X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q.-H. Xu, K. P. Loh, Angew. Chem. Int. Ed. 2010, 49, 6549–6553; (b) X. Xu, J. Huang, J. Li, J. Yan, J. Qin, Z. Li, Chem. Commun. 2011, 47, 12385–12387; (c) H.-L. Zhang, X.-L. Wei, Y. Zang, J.-Y. Cao, S. Liu, X.-P. He, Q. Chen, Y.-T. Long, J. Li, G.-R. Chen, K. Chen, Adv. Mater. 2013, 25, 4097–4101; (d) E. Ahmed, S. W. Morton, P. T. Hammond, T. M. Swager, Adv. Mater. 2013, 25, 4504–4510; (e) X. Wang, F. He, L. Li, H. Wang, R. Yan, L. Li, ACS Appl. Mater. Interfaces 2013, 5, 5700–5708.
- 11 Z.-G. Zhang, K.-L. Zhang, G. Liu, C.-X. Zhu, K.-G. Neoh, E.-T. Kang, Macromolecules 2009, 42, 3104–3111.
- 12 W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339–1339.
- 13 C. Wu, S. J. Hansen, Q. Hou, J. Yu, M. Zeigler, Y. Jin, D. R. Burnham, J. D. McNeill, J. M. Olson, D. T. Chiu, Angew. Chem. Int. Ed. 2011, 50, 3430–3434.
- 14 H. Shi, H. Sun, H. Yang, S. Liu, G. Jenkins, W. Feng, F. Li, Q. Zhao, B. Liu, W. Huang, Adv. Funct. Mater. 2013, 23, 3268–3276.
- 15 R. J. Hunters, Zeta Potential in Colloid Science: Principles and Applications, Academic Press: London, 1981.
- 16(a) Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J. Am. Chem. Soc. 2008, 130, 5856–5857; (b) Y. Y. Liang, D. Q. Wu, X. L. Feng, K. Müllen, Adv. Mater. 2009, 21, 1679–1683.
- 17 V. Thomsen, D. Schatzlein, D. Mercuro, Spectroscopy 2003, 18, 112–114.