Alkylamines-intercalated α-zirconium phosphate as latent thermal anionic initiators
Corresponding Author
Osamu Shimomura
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Correspondence to: O. Shimomura (E-mail: [email protected])Search for more papers by this authorKeisuke Maeno
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Search for more papers by this authorAtsushi Ohtaka
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Search for more papers by this authorCorresponding Author
Shunro Yamaguchi
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047 Japan
Correspondence to: O. Shimomura (E-mail: [email protected])Search for more papers by this authorJunko Ichihara
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047 Japan
Search for more papers by this authorKiyoko Sakamoto
Department of Chemistry, Osaka Sangyo University, Nakagaito, Daito, Osaka, 574–8530 Japan
Search for more papers by this authorRyôki Nomura
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Search for more papers by this authorCorresponding Author
Osamu Shimomura
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Correspondence to: O. Shimomura (E-mail: [email protected])Search for more papers by this authorKeisuke Maeno
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Search for more papers by this authorAtsushi Ohtaka
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Search for more papers by this authorCorresponding Author
Shunro Yamaguchi
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047 Japan
Correspondence to: O. Shimomura (E-mail: [email protected])Search for more papers by this authorJunko Ichihara
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047 Japan
Search for more papers by this authorKiyoko Sakamoto
Department of Chemistry, Osaka Sangyo University, Nakagaito, Daito, Osaka, 574–8530 Japan
Search for more papers by this authorRyôki Nomura
Department of Applied Chemistry, Osaka Institute of Technology, Ashahi-ku, Osaka, 535–8585 Japan
Search for more papers by this authorABSTRACT
The reaction of glycidyl phenyl ether (GPE) with 1-aminoalkanes-intercalated α-zirconium phosphate (α-ZrP·1-aminoalkane): 1-aminoalkanes 1-aminopropane (α-ZrP·Pr), 1-aminobutane (α-ZrP·Bu), 1-aminooctane (α-ZrP·Oct), and 1-aminohexadecane (α-ZrP·Hed) was carried out at varying temperatures for 1 h periods. Reaction progress was not observed until the reactants were heated to 80 °C or above. On increasing the temperature, the conversion factors increased such that, at 140 °C, conversions of 62% (α-ZrP·Pr), 60% (α-ZrP·Bu), 67% (α-ZrP·Oct), and 64% (α-ZrP·Hed) were obtained. The thermal stabilities as latent initiators were tested: GPEs reacted with α-ZrP·Pr, α-ZrP·Bu, and α-ZrP·Oct at 40 °C for 360 h achieved conversions of 83, 55, and 59%, respectively. In contrast, the reaction in the presence of α-ZrP·Hed did not proceed at 40 °C. The order of the thermal stability of GPE in the presence of α-ZrP·1-aminoalkane intercalation compounds was: α-ZrP·Hed > α-ZrP·Bu ≈ α-ZrP·Oct > α-ZrP·Pr. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1854–1861
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
pola27191-sup-0001-suppfig1.docx4.5 MB | Supplementary Information Figure 1. |
pola27191-sup-0002-suppfig2.docx94 KB | Supplementary Information Figure 2. |
pola27191-sup-0003-suppfig3.docx111.8 KB | Supplementary Information Figure 3. |
pola27191-sup-0004-suppfig4.docx120.3 KB | Supplementary Information Figure 4. |
pola27191-sup-0005-suppinfo1.docx17.7 KB | Supplementary Information |
pola27191-sup-0006-suppinfo2.docx4.8 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1A. Sudo, H. Yamashita, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3631–3636.
- 2M. Kirino, I. Tomita, Macromolecules 2010, 43, 8821–8827.
- 3M. S. Kim, K. W. Lee, T. Endo, S. B. Lee, Macromolecules 2004, 37, 5830–5834.
- 4H. Han, N. V. Tsarevsky, Polym. Chem. 2012, 3, 1910–1917.
- 5F. Hamazu, S. Akashi, T. Koizumi, T. Takata, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 1023–1028.
- 6A. Kikkawa, T. Takata, T. Endo, Makromol. Chem. 1991, 192, 655–662.
- 7P. E. Sundell, S. Joensson, A. Hult, J. Polym. Sci. Part A: Polym. Chem. 1991, 29, 1535–1543.
- 8F. Hamazu, S. Akashi, T. Koizumi, T. Takata, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1991, 29, 1675–1680.
- 9T. Endo, A. Kikkawa, H. Uno, H. Sato, M. Hiza, T. Takata, J. Polym. Sci. Part C: Polym. Lett. 1989, 27, 73–77.
- 10H. Uno, T. Endo, Chem. Lett. 1986, 11, 1869–1870.
- 11T. Endo, H. Arita, Makromol. Chem., Rapid Commun. 1985, 6, 137–139.
- 12M. He, X. Huang, Y. Huang, Z. Zeng, J. Yang, Polymer 2012, 53, 3172–3177.
- 13M. Kirino, I. Tomita, J. Polym. Sci. Part A: Polym. Chem. 2013, 20, 4292–4300.
- 14J. V. Crivello, S. Kong, Macromolecules 2000, 33, 833–842.
- 15J. V. Crivello, Y. L. Lai, J. Polym. Sci. Part A: Polym. Chem. 1995, 33, 653–663.
- 16J. V. Crivello, J. Photopolym. Sci. Technol. 2009, 22, 575–582.
- 17J. V. Crivello, J. Photopolym. Sci. Technol. 2008, 21, 493–497.
- 18J. V. Crivello, J. Photopolym. Sci. Technol. 2007, 20, 599–603.
- 19M. P. Lin, T. Ikeda, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 2569–2576.
- 20M. P. Lin, T. Ikeda, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 933–936.
- 21M. P. Lin, H. B. Kim, T. Ikeda, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 2365–2369.
- 22F. Hamazu, S. Akashi, T. Koizumi, T. Takata, T. Endo, J. Photopolym. Sci. Technol. 1992, 5, 247–254.
- 23N. P. Hacker, K. M. Welsh, Macromolecules 1991, 24, 2137–2139.
- 24D. R. McKean, U. P. Schaedeli, P. H. Kasai, S. A. MacDonald, J. Polym. Sci. Part A: Polym. Chem. 1991, 29, 309–316.
- 25O. Shimomura, T. Sato, I. Tomita, T. Endo, Macromolecules 1998, 31, 2013–2015.
- 26O. Shimomura, I. Tomita, T. Endo, Macromol. Rapid Commun. 1998, 19, 493–497.
10.1002/(SICI)1521-3927(19980901)19:9<493::AID-MARC493>3.0.CO;2-P CAS Web of Science® Google Scholar
- 27O. Shimomura, I. Tomita, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 127–128.
- 28O. Shimomura, I. Tomita, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 18–27.
- 29O. Shimomura, I. Tomita, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 868–871.
- 30O. Shimomura, I. Tomita, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 3928–3933.
- 31O. Shimomura, I. Tomita, T. Endo, Nettowaku Porima 1998, 19, 211–214.
- 32G. I. Gurina, K. V. Savchenko, Teor. Eksp. Khim. 1993, 29, 88–91.
- 33B. Ha, K. Char, H. S. Jeon, J. Phys. Chem. B 2005, 109, 24434–24440.
- 34L. Sun, W. J. Boo, R. L. Browning, H.-J. Sue, Clearfield, A. Chem. Mater. 2005, 17, 5606–5609.
- 35D. J. Mac Lachlan, K. R. Morgan, J. Phys. Chem. 1990, 94, 7656–7661.
- 36D. J. Mac Lachlan, K. R. Morgan, J. Phys. Chem. 1992, 96, 3458–3464.
- 37M. Kaneno, S. Yamaguchi, H. Nakayama, K. Miyakubo, T. Ueda, T. Eguchi, N. Nakamura, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 2000, 341, 561–566.
- 38G. Lagaly, Solid State Ionics 1986, 22, 43–51.
- 39R. M. Tindwa, D. K. Ellis, G. Z. Peng, A. Clearfield, J. Chem. Soc., Faraday Trans. 1 1985, 81, 545–552.
- 40M. Casciola, U. Costantino, L. Di Croce, F. Marmottini, J. Inclusion Phenom. 1988, 6, 291–306.
- 41G. Alberti, U. Costantino, F. Marmottini, G. Perego, J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 549–560.
- 42M. Casciola, U. Costantino, S. D'Amico, Solid State Ionics 1986, 22, 127–133.
- 43A. Clearfield, R. M. Tindwa, J. Inorg. Nucl. Chem. 1979, 41, 871–878.
- 44M. Casciola, G. Alberti, A. Donnadio, M. Pica, F. Marmottini, A. Bottino, P. Piaggio, J. Mater. Chem. 2005, 15, 4262–4267.
- 45W. J. Boo, L. Sun, J. Liu, A. Clearfield, H.-J. Sue, J. Phys. Chem. C 2007, 111, 10377–10381.
- 46W. J. Boo, L. Sun, G. L. Warren, E. Moghbelli, H. Pham, A. Clearfield, H. J. Sue, Polymer 2007, 48, 1075–1082.
- 47R. Bongiovanni, M. Casciola, A. Di Gianni, A. Donnadio, G. Malucelli, Eur. Polym. J. 2009, 45, 2487–2493.
- 48M. Pica, A. Donnadio, E. Troni, D. Capitani, M. Casciola, Inorg. Chem., 2013, 52, 7680–7687.
- 49M. Casciola, D. Capitani, A. Donnadio, G. Munari, M. Pica, Inorg. Chem. 2010, 49, 3329–3336.
- 50G. Alberti, M. Casciola, J. Costantino, Colloid Interface Sci. 1985, 107, 256–263. The intercalation of 1-aminopropane into α-ZrP is generally carried out in water. However the washing and filtration after the reaction was consumed long time to use water. The intercalation condition was slightly modified to use methanol.
- 51Reaction of epoxy compounds with α-ZrP, the intercalation reaction of α-ZrP with 1,2-epoxydodecane was reported.49 The reaction has been expected to occur the ring opening of epoxide by -P-OH of α-ZrP.
- 52A. A. Freitas, F. H. Quina, Langmuir 2000, 16, 6689–6692.
- 53After the reaction of GPE with α-ZrP·Bu at 120 °C for 1 h, the obtained α-ZrP was washed with THF, and the residue of α-ZrP·Bu-RXN was dried under vacuum.
- 54A. A. Hanna, A. F. Ali, A. E. Gad, Phosphorus Res. Bull. 2009, 23, 83–89.
- 55Result of the elemental analysis of α-ZrP·Bu-RXN; C: 35.56, H: 4.10, N: 0.64. The content of 1-aminobutane was calculated from N: 0.64 and the number of reacted GPE was calculated from the N/C ratio.